Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Dec 16:7:11-7.
doi: 10.2147/RMHP.S55305. eCollection 2013.

Clinical risk-scoring algorithm to forecast scrub typhus severity

Affiliations

Clinical risk-scoring algorithm to forecast scrub typhus severity

Pamornsri Sriwongpan et al. Risk Manag Healthc Policy. .

Abstract

Purpose: To develop a simple risk-scoring system to forecast scrub typhus severity.

Patients and methods: Seven years' retrospective data of patients diagnosed with scrub typhus from two university-affiliated hospitals in the north of Thailand were analyzed. Patients were categorized into three severity groups: nonsevere, severe, and dead. Predictors for severity were analyzed under multivariable ordinal continuation ratio logistic regression. Significant coefficients were transformed into item score and summed to total scores.

Results: Predictors of scrub typhus severity were age >15 years, (odds ratio [OR] =4.09), pulse rate >100/minute (OR 3.19), crepitation (OR 2.97), serum aspartate aminotransferase >160 IU/L (OR 2.89), serum albumin ≤3.0 g/dL (OR 4.69), and serum creatinine >1.4 mg/dL (OR 8.19). The scores which ranged from 0 to 16, classified patients into three risk levels: non-severe (score ≤5, n=278, 52.8%), severe (score 6-9, n=143, 27.2%), and fatal (score ≥10, n=105, 20.0%). Exact severity classification was obtained in 68.3% of cases. Underestimations of 5.9% and overestimations of 25.8% were clinically acceptable.

Conclusion: The derived scrub typhus severity score classified patients into their severity levels with high levels of prediction, with clinically acceptable under- and overestimations. This classification may assist clinicians in patient prognostication, investigation, and management. The scoring algorithm should be validated by independent data before adoption into routine clinical practice.

Keywords: clinical prediction rule; prognostic predictors; risk-scoring system; severe scrub typhus.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Distribution of scrub typhus severity scores.
Figure 2
Figure 2
Discrimination of severity based on scrub typhus severity scores.

Similar articles

Cited by

References

    1. Leelarasamee A, Chupaprawan C, Chenchittikul M, Udompanthurat S. Etiologies of acute undifferentiated febrile illness in Thailand. J Med Assoc Thai. 2004;87(5):464–472. - PubMed
    1. Suttinont C, Losuwanaluk K, Niwatayakul K, et al. Causes of acute, undifferentiated, febrile illness in rural Thailand: results of a prospective observational study. Ann Trop Med Parasitol. 2006;100(4):363–370. - PubMed
    1. Moron CG, Popov VL, Feng HM, Wear D, Walker DH. Identification of the target cells of Orientiatsutsugamushi in human cases of scrub typhus. Mod Pathol. 2001;14(8):752–759. - PubMed
    1. Watt G, Kantipong P. Orientia tsutsugamushi and scrub typhus. In: Ruoult D, Parola P, editors. Rickettsial Diseases. New York: Information Healthcare; 2007. pp. 236–256.
    1. Jeong YJ, Kim S, Wook YD, Lee JW, Kim KI, Lee SH. Scrub typhus: clinical, pathologic, and imaging findings. Radiographics. 2007;27(1):161–172. - PubMed

LinkOut - more resources