Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Dec 30;6(1):54-68.
doi: 10.3390/v6010054.

CCR5 as a natural and modulated target for inhibition of HIV

Affiliations

CCR5 as a natural and modulated target for inhibition of HIV

Bryan P Burke et al. Viruses. .

Abstract

Human immunodeficiency virus type 1 (HIV-1) infection of target cells requires CD4 and a co-receptor, predominantly the chemokine receptor CCR5. CCR5-delta32 homozygosity results in a truncated protein providing natural protection against HIV infection-this without detrimental effects to the host-and transplantation of CCR5-delta32 stem cells in a patient with HIV ("Berlin patient") achieved viral eradication. As a more feasible approach gene-modification strategies are being developed to engineer cellular resistance to HIV using autologous cells. We have developed a dual therapeutic anti-HIV lentiviral vector (LVsh5/C46) that down-regulates CCR5 and inhibits HIV-1 fusion via cell surface expression of the gp41-derived peptide, C46. This construct, effective against multiple strains of both R5- and X4-tropic HIV-1, is being tested in Phase I/II trials by engineering HIV-resistant hematopoietic cells.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Lentiviral construct LVsh5/C46. LVsh5/C46 is a self-inactivating (SIN) lentiviral vector that lacks all viral coding sequences (gag, pol, and env genes deleted) which may give rise to the formation of replication-competent retrovirus or immunogenic peptides and is also devoid of all retroviral enhancer-promoter sequences that are known to be involved in insertional mutagenesis by related gammaretroviral-derived vectors. The internal promoters were chosen from human genes that show expression in hematopoietic stem/progenitor cells as well as T lymphocytes and macrophages, as required for anti-HIV therapy. Promoters were also chosen to direct appropriate levels of gene expression so as not to interfere with endogenous cellular processes. 5' LTR (long terminal repeat), derived from HIV-1 with the U3 region replaced with the cytomegalovirus (CMV) promoter/enhancer; 3' LTR, derived from HIV-1 with a 133bp deletion in the U3 region; cPPT, central polypurine tract; H1, human H1 RNA promoter; Ubc, human ubiquitin promoter; WPREmt, mutant woodchuck hepatitis virus post-transcriptional response element.
Figure 2
Figure 2
LVsh5/C46 introduction into target cells and simultaneous expression of C46 and knockdown of CCR5. Peripheral blood mononuclear cells (PBMC) were transduced with LVsh5/C46 (lower panel), or left untransduced (upper panel). C46 was detected by 2F5 monoclonal antibody, and CCR5 was detected by staining with anti-CD195 (CCR5) antibody. Cells from 3 independent donors are shown. Donor 2 was homozygous for CCR5-delta32 genotype and expresses no CCR5.
Figure 3
Figure 3
Schematic of the process for engineering protection from HIV-1 into human recipients via LVsh5/C46 mediated modification of CD4+ T lymphocytes and CD34+ HSPC. 1. Apheresis, small or standard volume respectively, to obtain CD4+ T cells or CD34+ hematopoietic stem cells; 2. Cell isolation using CliniMACS and DynaMag CTS bead separation; 3. Lentiviral vector transduction with LVsh5/C46 in appropriate cytokines—CD3/CD28 bead stimulation and IL2 for T cells, stem cell factor, thrombopoietin and FLT-3 ligand for hematopoietic stem cells; 4. Harvest of transduced cells and freezing; 5. Following release testing, transplantation of genetically modified cells. Busulfan (4 mg/kg or 8 mg/kg) is administered pre cell infusion to make bone marrow space for introduced CD34+ HSPC.

References

    1. Liu R., Paxton W.A., Choe S., Ceradini D., Martin S.R., Horuk R., MacDonald M.E., Stuhlmann H., Koup R.A., Landau N.R. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell. 1996;86:367–377. doi: 10.1016/S0092-8674(00)80110-5. - DOI - PubMed
    1. Hütter G., Nowak D., Mossner M., Ganepola S., Mussig A., Allers K., Schneider T., Hofmann J., Kücherer C., Blau O., et al. Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N. Engl. J. Med. 2009;360:692–698. doi: 10.1056/NEJMoa0802905. - DOI - PubMed
    1. Allers K., Hütter G., Hofmann J., Loddenkemper C., Rieger K., Thiel E., Schneider T. Evidence for the cure of HIV infection by CCR5Delta32/Delta32 stem cell transplantation. Blood. 2011;117:2791–2799. doi: 10.1182/blood-2010-09-309591. - DOI - PubMed
    1. Fischereder M., Luckow B., Hocher B., Wuthrich R.P., Rothenpieler U., Schneeberger H., Panzer U., Stahl R.A., Hauser I.A., Budde K., et al. CC chemokine receptor 5 and renal-transplant survival. Lancet. 2001;357:1758–1761. doi: 10.1016/S0140-6736(00)04898-4. - DOI - PubMed
    1. Heidenhain C., Puhl G., Moench C., Lautem A., Neuhaus P. Chemokine receptor 5Delta32 mutation reduces the risk of acute rejection in liver transplantation. Ann. Transplant. 2009;14:36–44. - PubMed

Publication types

MeSH terms