Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2013 Sep;22(5):621-30.

TGF-beta1-Induced MAPK activation promotes collagen synthesis, nodule formation, redox stress and cellular senescence in porcine aortic valve interstitial cells

Affiliations
  • PMID: 24383372
Comparative Study

TGF-beta1-Induced MAPK activation promotes collagen synthesis, nodule formation, redox stress and cellular senescence in porcine aortic valve interstitial cells

Dividutta Das et al. J Heart Valve Dis. 2013 Sep.

Abstract

Background and aim of the study: Aortic valve stenosis is a major cause of valve replacement, particularly in the elderly. TGF-beta1 is upregulated in stenotic valves and induces calcification and collagen synthesis in cultured valve interstitial cells. It has been shown previously that TGF-beta1 increases reactive oxygen species (ROS) in these cells in association with calcifying nodule formation, but the cellular signaling pathways responsible for these TGF-beta1-induced effects are not well defined.

Methods: Cultured porcine aortic valve interstitial cells were used to investigate the effects of inhibitors of TGF-beta1 signaling pathways on 3H-proline incorporation into the extracellular matrix, the peak number of calcifying nodules formed, redox stress as dichlorofluorescein diacetate (DCF-DA) fluorescence, and senescence-associated beta-galactosidase staining.

Results: Nodule formation and proline incorporation were inhibited by SB431542, implicating the Smad pathway, by SB203580, implicating the P38 MAPK pathway, and by U0126, implicating the Mekl/2/Erk1/2 pathway in both processes. Fasudil, an inhibitor of the Rho kinase pathway, was selective in inhibiting nodule formation but not proline incorporation. It was verified that Smad2 phosphorylation, Erk1/2 phosphorylation and p38 MAPK phosphorylation were all induced by TGF-beta1, with Smad 2 phosphorylation peaking at 1-2 h and MAPK phosphorylation at 24-48 h. The effect of TGF-beta1 on phosphorylation of Smad 2 was inhibited by SB431542, on the phosphorylation of p38 MAPK was inhibited by SB203580, and on the phosphorylation of Erk1/2 was inhibited by U0126. ROS generation in response to TGF-beta1, measured as 2,7-dichlorofluorescein-diacetate fluorescence, was inhibited significantly by SB203580 and U0126, implicating both the p38 MAPK and Mekl/2/Erk1/2 signaling pathways. Both pathways also mediated TGF-beta1-induced cellular senescence which was localized to cellular aggregates and mature nodules.

Conclusion: These data imply that the inhibition of either Smad or MAPK signaling pathways may have a therapeutic benefit in ameliorating the adverse pathological changes associated with aortic valve stenosis.

PubMed Disclaimer

Publication types

MeSH terms

Substances

Supplementary concepts

LinkOut - more resources