Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2014 May:29:148-57.
doi: 10.1016/j.semcdb.2013.12.015. Epub 2013 Dec 30.

Nuclear envelope-related lipodystrophies

Affiliations
Review

Nuclear envelope-related lipodystrophies

A C Guénantin et al. Semin Cell Dev Biol. 2014 May.

Abstract

Several alterations in nuclear envelope proteins building up the lamina meshwork beneath the inner nuclear membrane (mutations in lamins A/C, alterations of prelamin-A maturation, lamin B mutations or deregulation) have been shown to be responsible for or associated to human lipodystrophic syndromes. Lipodystrophic syndromes are rare and heterogeneous diseases, either genetic or acquired, characterized by generalized or partial fat atrophy associated with metabolic complications comprising insulin-resistant diabetes, dyslipidemia, and non-alcoholic fatty liver disease. Recent advances in the molecular genetics of different types of lipodystrophies generally pointed to primary adipocyte alterations leading to impaired adipogenesis and/or deregulation of the adipocyte lipid droplet. However, the precise mechanisms linking nuclear envelope abnormalities to lipodystrophies remain largely unknown. The phenotype of nuclear envelope-linked lipodystrophies ranges from the typical familial partial lipodystrophy of the Dunnigan type (FPLD2), due to heterozygous substitutions of the 482nd arginine of lamins A/C, to complex diseases that can combine lipodystrophy, metabolic complications, muscular or cardiac alterations and/or signs of accelerated aging. In this review we present the clinical, tissular and cellular characteristics of the nuclear envelope-linked lipodystrophies, as well as their hypothetical pathophysiological mechanisms.

Keywords: A-type-lamins; Adipocyte; Differentiation; Insulin resistance; Lipodystrophy; Senescence.

PubMed Disclaimer

MeSH terms