Nanoprecipitation and the "Ouzo effect": Application to drug delivery devices
- PMID: 24384372
- DOI: 10.1016/j.addr.2013.12.009
Nanoprecipitation and the "Ouzo effect": Application to drug delivery devices
Abstract
Biodegradable nanocarriers such as lipid- or polymer-based nanoparticles can be designed to improve the efficacy and reduce the toxic side effects of drugs. Under appropriate conditions, nanoprecipitation of a hydrophobic compound solution in a non-solvent can generate a dispersion of nanoparticles with a narrow distribution of sizes without the use of surfactant ("Ouzo" effect). The aim of this review is to present the main parameters controlling the nucleation and growth of aggregates in a supersaturated solution and the characteristics of the obtained nanoparticles. The importance of the kinetics of mixing of the solution containing the hydrophobic compound and the non-solvent is highlighted. Illustrative examples of polymeric nanoparticles for drug delivery or terpenoid-based nanoprodrugs obtained by nanoprecipitation are reported.
Keywords: Nanoparticles; Nanoprecipitation; Nucleation and growth; Ouzo effect; Squalenoylation; Terpenoid prodrug.
Copyright © 2013 Elsevier B.V. All rights reserved.
Similar articles
-
Influence of the nanoprecipitation conditions on the supramolecular structure of squalenoyled nanoparticles.Eur J Pharm Biopharm. 2015 Oct;96:89-95. doi: 10.1016/j.ejpb.2015.07.004. Epub 2015 Jul 22. Eur J Pharm Biopharm. 2015. PMID: 26210010
-
Charge-controlled nanoprecipitation as a modular approach to ultrasmall polymer nanocarriers: making bright and stable nanoparticles.ACS Nano. 2015 May 26;9(5):5104-16. doi: 10.1021/acsnano.5b00214. Epub 2015 Apr 27. ACS Nano. 2015. PMID: 25894117
-
Stability-limit "Ouzo region" boundaries for poly(lactide-co-glycolide) nanoparticles prepared by nanoprecipitation.Int J Pharm. 2016 Sep 10;511(1):262-266. doi: 10.1016/j.ijpharm.2016.07.010. Epub 2016 Jul 11. Int J Pharm. 2016. PMID: 27418569
-
Nanoprecipitation process: From encapsulation to drug delivery.Int J Pharm. 2017 Oct 30;532(1):66-81. doi: 10.1016/j.ijpharm.2017.08.064. Epub 2017 Aug 9. Int J Pharm. 2017. PMID: 28801107 Review.
-
Cyclodextrin containing biodegradable particles: from preparation to drug delivery applications.Int J Pharm. 2014 Jan 30;461(1-2):351-66. doi: 10.1016/j.ijpharm.2013.12.004. Epub 2013 Dec 14. Int J Pharm. 2014. PMID: 24342710 Review.
Cited by
-
Effect of Formulation and Processing Parameters on the Size of mPEG- b-p(HPMA-Bz) Polymeric Micelles.Langmuir. 2018 Dec 18;34(50):15495-15506. doi: 10.1021/acs.langmuir.8b03576. Epub 2018 Nov 26. Langmuir. 2018. PMID: 30415546 Free PMC article.
-
A Scalable Method for Squalenoylation and Assembly of Multifunctional 64Cu-Labeled Squalenoylated Gemcitabine Nanoparticles.Nanotheranostics. 2018 Sep 5;2(4):387-402. doi: 10.7150/ntno.26969. eCollection 2018. Nanotheranostics. 2018. PMID: 30324084 Free PMC article.
-
Spherical Cellulose Micro and Nanoparticles: A Review of Recent Developments and Applications.Nanomaterials (Basel). 2021 Oct 17;11(10):2744. doi: 10.3390/nano11102744. Nanomaterials (Basel). 2021. PMID: 34685185 Free PMC article. Review.
-
Liquid-Liquid Phase Separation Induced by Vapor Transfer in Evaporative Binary Sessile Droplets.Langmuir. 2023 Sep 19;39(37):13242-13257. doi: 10.1021/acs.langmuir.3c01686. Epub 2023 Sep 7. Langmuir. 2023. PMID: 37677134 Free PMC article.
-
Lipid-based nanoparticles as drug delivery carriers for cancer therapy.Front Oncol. 2024 Apr 10;14:1296091. doi: 10.3389/fonc.2024.1296091. eCollection 2024. Front Oncol. 2024. PMID: 38660132 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources