Ultrasound-based tumor movement compensation during navigated laparoscopic liver interventions
- PMID: 24385248
- DOI: 10.1007/s00464-013-3374-9
Ultrasound-based tumor movement compensation during navigated laparoscopic liver interventions
Abstract
Background: Image-guided navigation aims to provide better orientation and accuracy in laparoscopic interventions. However, the ability of the navigation system to reflect anatomical changes and maintain high accuracy during the procedure is crucial. This is particularly challenging in soft organs such as the liver, where surgical manipulation causes significant tumor movements. We propose a fast approach to obtain an accurate estimation of the tumor position throughout the procedure.
Methods: Initially, a three-dimensional (3D) ultrasound image is reconstructed and the tumor is segmented. During surgery, the position of the tumor is updated based on newly acquired tracked ultrasound images. The initial segmentation of the tumor is used to automatically detect the tumor and update its position in the navigation system. Two experiments were conducted. First, a controlled phantom motion using a robot was performed to validate the tracking accuracy. Second, a needle navigation scenario based on pseudotumors injected into ex vivo porcine liver was studied.
Result: In the robot-based evaluation, the approach estimated the target location with an accuracy of 0.4 ± 0.3 mm. The mean navigation error in the needle experiment was 1.2 ± 0.6 mm, and the algorithm compensated for tumor shifts up to 38 mm in an average time of 1 s.
Conclusion: We demonstrated a navigation approach based on tracked laparoscopic ultrasound (LUS), and focused on the neighborhood of the tumor. Our experimental results indicate that this approach can be used to quickly and accurately compensate for tumor movements caused by surgical manipulation during laparoscopic interventions. The proposed approach has the advantage of being based on the routinely used LUS; however, it upgrades its functionality to estimate the tumor position in 3D. Hence, the approach is repeatable throughout surgery, and enables high navigation accuracy to be maintained.
Similar articles
-
Design and implementation of an electromagnetic ultrasound-based navigation technique for laparoscopic ablation of liver tumors.Surg Endosc. 2018 Jul;32(7):3410-3419. doi: 10.1007/s00464-018-6088-1. Epub 2018 Feb 12. Surg Endosc. 2018. PMID: 29435744
-
Hybrid optical-vision tracking in laparoscopy: accuracy of navigation and ultrasound reconstruction.Minim Invasive Ther Allied Technol. 2024 Jun;33(3):176-183. doi: 10.1080/13645706.2024.2313032. Epub 2024 Feb 9. Minim Invasive Ther Allied Technol. 2024. PMID: 38334755
-
Augmented reality navigation for liver resection with a stereoscopic laparoscope.Comput Methods Programs Biomed. 2020 Apr;187:105099. doi: 10.1016/j.cmpb.2019.105099. Epub 2019 Oct 7. Comput Methods Programs Biomed. 2020. PMID: 31601442
-
Navigated laparoscopic ultrasound in abdominal soft tissue surgery: technological overview and perspectives.Int J Comput Assist Radiol Surg. 2012 Jul;7(4):585-99. doi: 10.1007/s11548-011-0656-3. Epub 2011 Sep 3. Int J Comput Assist Radiol Surg. 2012. PMID: 21892604 Review.
-
Performance of image guided navigation in laparoscopic liver surgery - A systematic review.Surg Oncol. 2021 Sep;38:101637. doi: 10.1016/j.suronc.2021.101637. Epub 2021 Jul 27. Surg Oncol. 2021. PMID: 34358880
Cited by
-
Enhanced Visualization: From Intraoperative Tissue Differentiation to Augmented Reality.Visc Med. 2018 Feb;34(1):52-59. doi: 10.1159/000485940. Epub 2018 Feb 16. Visc Med. 2018. PMID: 29594170 Free PMC article. Review.
References
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources