Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Meta-Analysis
. 2014 Feb 20;506(7488):376-81.
doi: 10.1038/nature12873. Epub 2013 Dec 25.

Genetics of rheumatoid arthritis contributes to biology and drug discovery

Yukinori Okada  1 Di Wu  2 Gosia Trynka  1 Towfique Raj  3 Chikashi Terao  4 Katsunori Ikari  5 Yuta Kochi  6 Koichiro Ohmura  7 Akari Suzuki  6 Shinji Yoshida  5 Robert R Graham  8 Arun Manoharan  8 Ward Ortmann  8 Tushar Bhangale  8 Joshua C Denny  9 Robert J Carroll  10 Anne E Eyler  11 Jeffrey D Greenberg  12 Joel M Kremer  13 Dimitrios A Pappas  14 Lei Jiang  15 Jian Yin  15 Lingying Ye  15 Ding-Feng Su  16 Jian Yang  17 Gang Xie  18 Ed Keystone  19 Harm-Jan Westra  20 Tõnu Esko  21 Andres Metspalu  22 Xuezhong Zhou  23 Namrata Gupta  24 Daniel Mirel  24 Eli A Stahl  25 Dorothée Diogo  1 Jing Cui  1 Katherine Liao  1 Michael H Guo  26 Keiko Myouzen  6 Takahisa Kawaguchi  27 Marieke J H Coenen  28 Piet L C M van Riel  29 Mart A F J van de Laar  30 Henk-Jan Guchelaar  31 Tom W J Huizinga  32 Philippe Dieudé  33 Xavier Mariette  34 S Louis Bridges Jr  35 Alexandra Zhernakova  36 Rene E M Toes  32 Paul P Tak  37 Corinne Miceli-Richard  34 So-Young Bang  38 Hye-Soon Lee  38 Javier Martin  39 Miguel A Gonzalez-Gay  40 Luis Rodriguez-Rodriguez  41 Solbritt Rantapää-Dahlqvist  42 Lisbeth Arlestig  42 Hyon K Choi  43 Yoichiro Kamatani  44 Pilar Galan  45 Mark Lathrop  46 RACI consortiumGARNET consortiumSteve Eyre  47 John Bowes  47 Anne Barton  48 Niek de Vries  49 Larry W Moreland  50 Lindsey A Criswell  51 Elizabeth W Karlson  52 Atsuo Taniguchi  5 Ryo Yamada  53 Michiaki Kubo  54 Jun S Liu  55 Sang-Cheol Bae  38 Jane Worthington  47 Leonid Padyukov  56 Lars Klareskog  56 Peter K Gregersen  57 Soumya Raychaudhuri  58 Barbara E Stranger  59 Philip L De Jager  3 Lude Franke  20 Peter M Visscher  17 Matthew A Brown  60 Hisashi Yamanaka  5 Tsuneyo Mimori  7 Atsushi Takahashi  61 Huji Xu  15 Timothy W Behrens  8 Katherine A Siminovitch  18 Shigeki Momohara  5 Fumihiko Matsuda  62 Kazuhiko Yamamoto  63 Robert M Plenge  1
Collaborators, Affiliations
Meta-Analysis

Genetics of rheumatoid arthritis contributes to biology and drug discovery

Yukinori Okada et al. Nature. .

Abstract

A major challenge in human genetics is to devise a systematic strategy to integrate disease-associated variants with diverse genomic and biological data sets to provide insight into disease pathogenesis and guide drug discovery for complex traits such as rheumatoid arthritis (RA). Here we performed a genome-wide association study meta-analysis in a total of >100,000 subjects of European and Asian ancestries (29,880 RA cases and 73,758 controls), by evaluating ∼10 million single-nucleotide polymorphisms. We discovered 42 novel RA risk loci at a genome-wide level of significance, bringing the total to 101 (refs 2 - 4). We devised an in silico pipeline using established bioinformatics methods based on functional annotation, cis-acting expression quantitative trait loci and pathway analyses--as well as novel methods based on genetic overlap with human primary immunodeficiency, haematological cancer somatic mutations and knockout mouse phenotypes--to identify 98 biological candidate genes at these 101 risk loci. We demonstrate that these genes are the targets of approved therapies for RA, and further suggest that drugs approved for other indications may be repurposed for the treatment of RA. Together, this comprehensive genetic study sheds light on fundamental genes, pathways and cell types that contribute to RA pathogenesis, and provides empirical evidence that the genetics of RA can provide important information for drug discovery.

PubMed Disclaimer

Figures

Figure 1
Figure 1. Overlap of RA risk loci with PID, hematological cancer somatic mutation, and molecular pathways
a, Overlap of RA risk genes with PID genes, subset by PID categories (I-VIII). b, Examples of overlap of hematological cancer somatic mutation genes with RA risk genes. c, Comparisons of molecular pathway analysis results between the current trans-ethnic meta-analysis (y-axis) and the previous meta-analysis for rheumatoid arthritis (x-axis). Each dot represents a molecular pathway. Dotted line represents FDR-q = 0.05 or y = x.
Figure 2
Figure 2. Prioritized biological RA risk genes
Representative biological RA risk genes. We list the summary gene score derived from individual criterion (filled red box indicates criterion satisfied; 98 genes with score ≥2 out of 377 genes included in the RA risk loci were defined as “biological candidate genes”; see details in Extended Data Fig. 6). Filled blue box indicates the nearest gene to the RA risk SNP. Filled green boxes indicate overlap with H3K4me3 peaks in immune-related cells. Filled purple boxes indicate overlap with drug target genes. Full results are in Supplementary Table 5.
Figure 3
Figure 3. Connection of biological RA risk genes to drug targets
a, PPI network of biological RA risk genes and drug target genes. b, Overlap and relative enrichment of 98 biological RA risk genes with targets of approved RA drugs and with all drug target genes. Enrichment was more apparent than that from all 377 RA risk genes (Extended Data Fig. 7c). c, Connections between RA risk SNPs (blue), biological genes (purple), genes from PPI (green), and approved RA drugs (orange). Full results are in Extended Data Fig. 8. d, Connections between RA genes and drugs indicated for other diseases.

Comment in

References

    1. Plenge RM, Scolnick EM, Altshuler D. Validating therapeutic targets through human genetics. Nat Rev Drug Discov. 2013;12:581–594. - PubMed
    1. Stahl EA, et al. Genome-wide association study meta-analysis identifies seven new rheumatoid arthritis risk loci. Nat Genet. 2010;42:508–514. - PMC - PubMed
    1. Okada Y, et al. Meta-analysis identifies nine new loci associated with rheumatoid arthritis in the Japanese population. Nat Genet. 2012;44:511–516. - PubMed
    1. Eyre S, et al. High-density genetic mapping identifies new susceptibility loci for rheumatoid arthritis. Nat Genet. 2012;44:1336–1340. - PMC - PubMed
    1. Ferreira RC, et al. Functional IL6R 358Ala Allele Impairs Classical IL-6 Receptor Signaling and Influences Risk of Diverse Inflammatory Diseases. PLoS Genet. 2013;9:e1003444. - PMC - PubMed

Publication types

MeSH terms