Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Jan;10(1):e1003408.
doi: 10.1371/journal.pcbi.1003408. Epub 2014 Jan 2.

Searching for collective behavior in a large network of sensory neurons

Affiliations

Searching for collective behavior in a large network of sensory neurons

Gašper Tkačik et al. PLoS Comput Biol. 2014 Jan.

Abstract

Maximum entropy models are the least structured probability distributions that exactly reproduce a chosen set of statistics measured in an interacting network. Here we use this principle to construct probabilistic models which describe the correlated spiking activity of populations of up to 120 neurons in the salamander retina as it responds to natural movies. Already in groups as small as 10 neurons, interactions between spikes can no longer be regarded as small perturbations in an otherwise independent system; for 40 or more neurons pairwise interactions need to be supplemented by a global interaction that controls the distribution of synchrony in the population. Here we show that such "K-pairwise" models--being systematic extensions of the previously used pairwise Ising models--provide an excellent account of the data. We explore the properties of the neural vocabulary by: 1) estimating its entropy, which constrains the population's capacity to represent visual information; 2) classifying activity patterns into a small set of metastable collective modes; 3) showing that the neural codeword ensembles are extremely inhomogenous; 4) demonstrating that the state of individual neurons is highly predictable from the rest of the population, allowing the capacity for error correction.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. A schematic of the experiment.
(A) Four frames from the natural movie stimulus showing swimming fish and water plants. (B) The responses of a set of 120 neurons to a single stimulus repeat, black dots designate spikes. (C) The raster for a zoomed-in region designated by a red square in (B), showing the responses discretized into Δτ = 20 ms time bins, where formula image represents a silence (absence of spike) of neuron i, and formula image represents a spike.
Figure 2
Figure 2. Learning the pairwise maximum entropy model for a 100 neuron subset.
A subgroup of 100 neurons from our set of 160 has been sorted by the firing rate. At left, the statistics of the neural activity: (A) correlations formula image, (B) firing rates (equivalent to formula image), and (C) the distribution of correlation coefficients formula image. The red distribution is the distribution of differences between two halves of the experiment, and the small red error bar marks the standard deviation of correlation coefficients in fully shuffled data (1.8×10−3). At right, the parameters of a pairwise maximum entropy model [formula image from Eq (19)] that reproduces these data: (D) coupling constants formula image, (E) fields formula image, and (F) the distribution of couplings in this group of neurons.
Figure 3
Figure 3. Reconstruction precision for a 100 neuron subset.
Given the reconstructed Hamiltonian of the pairwise model, we used an independent Metropolis Monte Carlo (MC) sampler to assess how well the constrained model statistics (mean firing rates (A), covariances (B), plotted on y-axes) match the measured statistics (corresponding x-axes). Error bars on data computed by bootstrapping; error bars on MC estimates obtained by repeated MC runs generating a number of samples that is equal to the original data size. (C) The distribution of the difference between true and model values for formula image covariance matrix elements, normalized by the estimated error bar in the data; red overlay is a Gaussian with zero mean and unit variance. The distribution has nearly Gaussian shape with a width of ≈1.1, showing that the learning algorithm reconstructs the covariance statistics to within measurement precision.
Figure 4
Figure 4. A test for overfitting.
(A) The per-neuron average log-probability of data (log-likelihood, formula image) under the pairwise model of Eq (19), computed on the training repeats (black dots) and on the testing repeats (red dots), for the same group of N = 100 neurons shown in Figure 1 and 2. Here the repeats have been reordered so that the training repeats precede testing repeats; in fact, the choice of test repeats is random. (B) The ratio of the log-likelihoods on test vs training data, shown as a function of the network size N. Error bars are the standard deviation across 30 subgroups at each value of N.
Figure 5
Figure 5. Predicted vs measured probability of K simultaneous spikes (spike synchrony).
(A–C) formula image for subnetworks of size formula image; error bars are s.d. across random halves of the duration of the experiment. For N = 10 we already see large deviations from an independent model, but these are captured by the pairwise model. At N = 40 (B), the pairwise models miss the tail of the distribution, where formula image. At N = 100 (C), the deviations between the pairwise model and the data are more substantial. (D) The probability of silence in the network, as a function of population size; error bars are s.d. across 30 subgroups of a given size N. Throughout, red shows the data, grey the independent model, and black the pairwise model.
Figure 6
Figure 6. K-pairwise model for a the same group of N = 100 cells shown in Figure 1.
The neurons are again sorted in the order of decreasing firing rates. (A) Pairwise interactions, formula image, and the comparison with the interactions of the pairwise model, (B). (C) Single-neuron fields, formula image, and the comparison with the fields of the pairwise model, (D). (E) The global potential, V(K), where K is the number of synchronous spikes. See Methods: Parametrization of the K-pairwise model for details.
Figure 7
Figure 7. Predicted vs real connected three–point correlations, from Eq (21).
(A) Measured formula image (x-axis) vs predicted by the model (y-axis), shown for an example 100 neuron subnetwork. The ∼1.6×105 triplets are binned into 1000 equally populated bins; error bars in x are s.d. across the bin. The corresponding values for the predictions are grouped together, yielding the mean and the s.d. of the prediction (y-axis). Inset shows a zoom-in of the central region, for the K-pairwise model. (B) Error in predicted three-point correlation functions as a function of subnetwork size N. Shown are mean absolute deviations of the model prediction from the data, for pairwise (black) and K-pairwise (red) models; error bars are s.d. across 30 subnetworks at each N, and the dashed line shows the mean absolute difference between two halves of the experiment. Inset shows the distribution of three–point correlations (grey filled region) and the distribution of differences between two halves of the experiment (dashed line); note the logarithmic scale.
Figure 8
Figure 8. Predicted vs real distributions of energy, E.
(A) The cumulative distribution of energies, formula image from Eq (22), for the K-pairwise models (red) and the data (black), in a population of 120 neurons. Inset shows the high energy tails of the distribution, formula image from Eq (24); dashed line denotes the energy that corresponds to the probability of seeing the pattern once in an experiment. See Figure S5 for an analogous plot for the pairwise model. (B) Relative difference in the first two moments (mean, formula image, dashed; standard deviation, formula image, solid) of the distribution of energies evaluated over real data and a sample from the corresponding model (black = pairwise; red = K-pairwise). Error bars are s.d. over 30 subnetworks at a given size N.
Figure 9
Figure 9. Effective field and spiking probabilities in a network of N = 120 neurons.
Given any configuration of formula image neurons, the K-pairwise model predicts the probability of firing of the N-th neuron by Eqs (25,26); the effective field formula image is fully determined by the parameters of the maximum entropy model and the state of the network. For each activity pattern in recorded data we computed the effective field, and binned these values (shown on x-axis). For every bin we estimated from data the probability that the N-th neuron spiked (black circles; error bars are s.d. across 120 cells). This is compared with a parameter-free prediction (red line) from Eq (26). For comparison, gray squares show the analogous analysis for the pairwise model (error bars omitted for clarity, comparable to K-pairwise models). Inset: same curves shown on the logarithmic plot emphasizing the low range of effective fields. The gray shaded region shows the distribution of the values of formula image over all 120 neurons and all patterns in the data.
Figure 10
Figure 10. The number of identified metastable patterns.
Every recorded pattern is assigned to its basin of attraction by descending on the energy landscape. The number of distinct basins is shown as a function of the network size, N, for K-pairwise models (black line). Gray lines show the subsets of those basins that are encountered multiple times in the recording (more than 10 times, dark gray; more than 100 times, light gray). Error bars are s.d. over 30 subnetworks at every N. Note the logarithmic scale for the number of MS states.
Figure 11
Figure 11. Energy landscape in a N = 120 neuron K-pairwise model.
(A) The 10 most frequently occurring metastable (MS) states (active neurons for each in red), and 50 randomly chosen activity patterns for each MS state (black dots represent spikes). MS 1 is the all-silent basin. (B) The overlaps, formula image, between all pairs of identified patterns belonging to basins 2,…,10 (MS 1 left out due to its large size). Patterns within the same basin are much more similar between themselves than to patterns belonging to other basins. (C) The structure of the energy landscape explored with Monte Carlo. Starting in the all-silent state, single spin-flip steps are taken until the configuration crosses the energy barrier into another basin. Here, two such paths are depicted (green, ultimately landing in the basin of MS 9; purple, landing in basin of MS 5) as projections into 3D space of scalar products (overlaps) with the MS 1, 5, and 9. (D) The detailed structure of the energy landscape. 10 MS patterns from (A) are shown in the energy (y-axis) vs log basin size (x-axis) diagram (silent state at lower right corner). At left, transitions frequently observed in MC simulations starting in each of the 10 MS states, as in (C). The most frequent transitions are decays to the silent state. Other frequent transitions (and their probabilities) shown using vertical arrows between respective states. Typical transition statistics (for MS 3 decaying into the silent state) shown in the inset: the distribution of spin-flip attempts needed, P(L), and the distribution of energy barriers, formula image, over 1000 observed transitions.
Figure 12
Figure 12. Basin assignments are reproducible across stimulus repeats and across subnetworks.
(A) Most frequently occurring MS patterns collected from 30 subnetworks of size N = 120 out of a total population of 160 neurons; patterns have been clustered into 12 clusters (colors). (B) The probability (across stimulus repeats) that the population is in a particular basin of attraction at any given time. Each line corresponds to one pattern from (A); patterns belonging to the same cluster are depicted in the same color. Inset shows the detailed structure of several transitions out of the all-silent state; overlapping lines of the same color show that the same transition is identified robustly across different subnetwork choices of 120 neurons out of 160. (C) On about half of the time bins, the population is in the all-silent basin; on the remaining time bins, the coherence (the probability of being in the dominant basin divided by the probability of being in every possible non-silent basin) is high. (D) The average autocorrelation function of traces in (B), showing the typical time the population stays within a basin (dashed red line is best exponential fit with τ = 48 ms, or about 2.5 time bins).
Figure 13
Figure 13. Entropy and multi-information from the K-pairwise model.
(A) Independent entropy per neuron, formula image, in black, and the entropy of the K-pairwise models per neuron, formula image, in red, as a function of N. Dashed lines are fits from (B). (B) Independent entropy scales linearly with N (black dashed line). Multi-information formula image of the K-pairwise models is shown in dark red. Dashed red line is a best quadratic fit for dependence of formula image on formula image; this can be rewritten as formula image, where γ(N) (shown in inset) is the effective scaling of multi-information with system size N. In both panels, error bars are s.d. over 30 subnetworks at each size N.
Figure 14
Figure 14. Coincidence probabilities.
(A) The probability that the combination of spikes and silences is exactly the same at two randomly chosen moments of time, as a function of the size of the population. The real networks are orders of magnitude away from the predictions of an independent model, and this behavior is captured precisely by the K-pairwise model. (B) Extrapolating the N dependence of formula image to large N.
Figure 15
Figure 15. Predicting the firing probability of a neuron from the rest of the network.
(A) Probability per unit time (spike rate) of a single neuron. Top, in red, experimental data. Lower traces, in black, predictions based on states of other neurons in an N–cell group, as described in the text. Solid lines are the mean prediction across all trials, and thin lines are the envelope ± one standard deviation. (B) Cross–correlation (CC) between predicted and observed spike rates vs. time, for each neuron in the N = 120 group. Green empty circles are averages of CC computed from every trial, whereas blue solid circles are the CC computed from average predictions. (C) Dependence of CC on the population size N. Thin blue lines follow single neurons as predictions are based on increasing population sizes; red line is the cell illustrated in (A), and the line with error bars shows mean ± s.d. across all cells. Green line shows the equivalent mean behavior computed for the green empty circles in (B).

References

    1. Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci (USA) 79: 2554–8 - PMC - PubMed
    1. Amit DJ (1989) Modeling Brain Function: The World of Attractor Neural Networks. Cambridge: Cambridge University Press.
    1. Hertz J, Krogh A & Palmer RG (1991) Introduction to the Theory of Neural Computation. Redwood City: Addison Wesley.
    1. Schneidman E, Berry MJ II, Segev R (2006) Bialek W (2006) Weak pairwise correlations imply strongly correlated network states in a neural population. Nature 440: 1007–1012 - PMC - PubMed
    1. Shlens J, Field GD, Gaulthier JL, Grivich MI, Petrusca D, Sher A, Litke AM (2006) Chichilnisky EJ (2006) The structure of multi-neuron firing patterns in primate retina. J Neurosci 26: 8254–8266 - PMC - PubMed

Publication types