Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Feb;92(2):456-66.
doi: 10.2527/jas.2013-7075. Epub 2014 Jan 7.

μ-Calpain, calpastatin, and growth hormone receptor genetic effects on preweaning performance, carcass quality traits, and residual variance of tenderness in Angus cattle selected to increase minor haplotype and allele frequencies

Affiliations

μ-Calpain, calpastatin, and growth hormone receptor genetic effects on preweaning performance, carcass quality traits, and residual variance of tenderness in Angus cattle selected to increase minor haplotype and allele frequencies

R G Tait Jr et al. J Anim Sci. 2014 Feb.

Abstract

Genetic marker effects and interactions are estimated with poor precision when minor marker allele frequencies are low. An Angus population was subjected to marker assisted selection for multiple years to increase divergent haplotype and minor marker allele frequencies to 1) estimate effect size and mode of inheritance for previously reported SNP on targeted beef carcass quality traits; 2) estimate effects of previously reported SNP on nontarget performance traits; and 3) evaluate tenderness SNP specific residual variance models compared to a single residual variance model for tenderness. Divergent haplotypes within µ-calpain (CAPN1), and SNP within calpastatin (CAST) and growth hormone receptor (GHR) were successfully selected to increase their frequencies. Traits evaluated were birth BW, weaning BW, final BW, fat thickness, LM area, USDA marbling score, yield grade, slice shear force (SSF), and visible and near infrared predicted slice shear force. Both CAPN1 and CAST exhibited additive (P < 0.001) modes of inheritance for SSF and neither exhibited dominance (P ≥ 0.19). Furthermore, the interaction between CAPN1 and CAST for SSF was not significant (P = 0.55). Estimated additive effects of CAPN1 (1.049 kg) and CAST (1.257 kg) on SSF were large in this study. Animals homozygous for tender alleles at both CAPN1 and CAST would have 4.61 kg lower SSF (38.6% of the mean) than animals homozygous tough for both markers. There was also an effect of CAST on yield grade (P < 0.02). The tender CAST allele was associated with more red meat yield and less trimmable fat. There were no significant effects (P ≥ 0.23) for GHR on any of the traits evaluated in this study. Furthermore, CAST specific residual variance models were found to fit significantly better (P < 0.001) than single residual variance models for SSF, with the tougher genotypes having larger residual variance. Thus, the risk of a tough steak from the undesired CAST genotype is increased through both an increase in mean and an increase in variation. This work confirms the importance of CAPN1 and CAST for tenderness in beef, provides a new effect of CAST on beef tenderness, and questions the utility of GHR as a selection marker for beef quality.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources