Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2014 Feb 15;189(4):394-400.
doi: 10.1164/rccm.201308-1543PP.

Novel and emerging therapies for pulmonary hypertension

Affiliations
Review

Novel and emerging therapies for pulmonary hypertension

Soni Savai Pullamsetti et al. Am J Respir Crit Care Med. .

Abstract

The development of therapeutic concepts in pulmonary hypertension (PH) is intimately linked with the unraveling of pathogenetic sequelae. This perspective highlights advances in our understanding of the regulation of vasomotion and vascular remodeling that have led to "reverse-remodeling" and regenerative strategies as novel treatment concepts. Progress has been made in understanding redox-dependent signaling; inflammatory sequelae; and transcription factor, ion channel, and metabolic abnormalities, as well as growth factor-dependent hyperproliferation that underlies PH. We are, however, far from understanding the molecular pathways that differentially drive the various vascular phenotypes (intimal thickening, media hypertrophy, adventitial thickening, plexiform lesions, vascular pruning) in this disease. Antiproliferative strategies, transcription factor-based therapies, inflammation/immune cell-focused approaches, and epigenetic modulation-based therapies are all novel treatment concepts for PH. The proangiogenic potential of genetically engineered mesenchymal stem cells and endothelial progenitor cells has been explored as a regenerative strategy. The progress that has been made in identifying important cellular and molecular mechanisms and applying this knowledge to novel therapies is largely restricted to group 1 PH. However, understanding the molecular sequelae underlying PH in groups 2 through 5 PH is also urgently needed.

PubMed Disclaimer

MeSH terms

LinkOut - more resources