Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Jan;232(1):1-9.
doi: 10.1016/j.atherosclerosis.2013.10.001. Epub 2013 Oct 26.

LXR agonism improves TNF-α-induced endothelial dysfunction in the absence of its cholesterol-modulating effects

Affiliations

LXR agonism improves TNF-α-induced endothelial dysfunction in the absence of its cholesterol-modulating effects

Frank Spillmann et al. Atherosclerosis. 2014 Jan.

Abstract

Stimulation of the liver X receptor (LXR) is associated with anti-inflammatory and vascular-protective effects under hyperlipemic conditions. We examined whether LXR stimulation influences TNF-α-induced endothelial dysfunction under normolipemic conditions. Endothelium-dependent vasorelaxation of aortic rings was determined in an organ water bath. Human umbilical vein endothelial cells (HUVEC) were exposed to TNF-α (10 ng/ml) in the presence or absence of 5 μM of the LXR agonist T0901317 or GW3965 and changes in TNF-α-induced endothelial cell apoptosis, inflammation, oxidative stress, and NO metabolism were analyzed. T0901317 improved TNF-α-impaired endothelium-dependent relaxation of aortic rings in response to acetylcholine. T0901317 decreased the TNF-α-induced apoptosis and inflammation as indicated by a decrease in caspase 3/7 activity, VCAM-1 mRNA expression and subsequent mononuclear cell adhesion. Furthermore, T0901317 reduced the expression of the oxidative stress markers: AT1R, NOX4, and p22phox and normalized the TNF-α-induced NOX activity to basal levels. In line with the reduced AT1R expression, T0901317 impaired the Ang II responsiveness. T0901317 influenced NO metabolism as indicated by a decrease in TNF-α-upregulated arginase activity, a reversal of TNF-α-induced downregulation of argininosuccinate synthase mRNA expression and eNOS expression to basal levels and a raise in NO production. Furthermore, T0901317 decreased the TNF-α-induced superoxide and nitrotyrosine production, but did not upregulate the TNF-α-downregulated eNOS dimer/monomer ratio. Silencing of LXRβ, but not of LXRα, abrogated the anti-apoptotic effects of T0901317. We conclude that LXR agonism improves TNF-α-impaired endothelial function via its anti-apoptotic, anti-inflammatory, and anti-oxidative properties and its capacity to restore TNF-α-impaired NO bioavailability independent of its cholesterol-modulating effects.

Keywords: Endothelial dysfunction; HUVEC; LXR; LXR agonist; Liver X receptor; NAD(P)H oxidase; NO; NOX; Nitric oxide; O(2)•; ROS; RXR; TNF; TNF-α; eNOS; endothelial nitric oxide synthase; human umbilical vein cells; nitric oxide; reactive oxygen species; retinoid X receptor; superoxide; tumor necrosis factor.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources