Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2014 Mar;23(2):113-21.
doi: 10.1097/01.mnh.0000441152.62943.29.

Role of epidermal growth factor receptor in vascular structure and function

Affiliations
Review

Role of epidermal growth factor receptor in vascular structure and function

Barbara Schreier et al. Curr Opin Nephrol Hypertens. 2014 Mar.

Abstract

Purpose of the review: The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase with a wide implication in tumor biology, wound healing and development. Besides acting as a growth factor receptor activated by ligands such as EGF, the EGFR can also be transactivated and thereby mediate cross-talk with different signaling pathways. The aim of this review is to illustrate the Janus-faced function of the EGFR in the vasculature with its relevance for vascular biology and disease.

Recent findings: Over recent years, the number of identified signaling partners of the EGFR has steadily increased, as have the biological processes in which the EGFR is thought to be involved. Recently, new models have allowed investigation of EGFR effects in vivo, shedding some light on the overall function of the EGFR in the vasculature. At the same time, EGFR inhibitors and antibodies have become increasingly established in cancer therapy, providing potential therapeutic tools for decreasing EGFR signaling.

Summary: The EGFR is a versatile signaling pathway integrator associated with vascular homeostasis and disease. In addition to modulating basal vascular tone and tissue homeostasis, the EGFR also seems to be involved in proinflammatory, proliferative, migratory and remodeling processes, with enhanced deposition of extracellular matrix components, thereby promoting vascular diseases such as hypertension or atherosclerosis.

PubMed Disclaimer

Publication types

MeSH terms