Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Jul;52(1):13-22.
doi: 10.1016/S0006-3495(87)83183-1.

Open sodium channel properties of single canine cardiac Purkinje cells

Open sodium channel properties of single canine cardiac Purkinje cells

M F Sheets et al. Biophys J. 1987 Jul.

Abstract

Open channel properties of canine cardiac Purkinje cell Na+ channels were studied with single channel cell-attached recording and with whole cell macroscopic current recording in internally perfused cells. Single channel currents and membrane currents increased with an increase in Na+ concentration, but showed evidence of saturation. Assuming first-order binding, the Km for Na+ was 370 mM. PCs/PNa was 0.020 and PK/PNa was 0.094. The current-voltage relationship for single channels showed prominent flattening in the hyperpolarizing direction. This flattening was accentuated by 10 mM Ca2+ and was greatly reduced in O mM Ca2+, indicating that the rectification was a consequence of Ca2+ block of the Na+ channels. A similar instantaneous current-voltage relationship was seen for the whole cell membrane currents. These results demonstrate that the cardiac channel shows substantial Ca2+ block, although it is relatively insensitive to tetrodotoxin. The Na+ and Ca2+ binding properties could be modeled by the four-barrier Eyring rate theory model, with similar values to those reported for the neuroblastoma Na+ channel (Yamamoto, D.,J.Z. Yeh, and T. Narahashi, 1984, Biophys J., 45:337-344).

PubMed Disclaimer

References

    1. Pflugers Arch. 1981 Aug;391(2):85-100 - PubMed
    1. J Gen Physiol. 1976 Aug;68(2):111-25 - PubMed
    1. J Physiol. 1955 Sep 28;129(3):568-82 - PubMed
    1. Biophys J. 1984 Jan;45(1):337-44 - PubMed
    1. J Gen Physiol. 1985 Jan;85(1):65-82 - PubMed

Publication types

LinkOut - more resources