Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 May 19;411(2):226-30.
doi: 10.1016/0006-8993(87)91073-0.

Detection and photoaffinity labeling of the Ca2+-activated K+ channel-associated apamin receptor in cultured astrocytes from rat brain

Detection and photoaffinity labeling of the Ca2+-activated K+ channel-associated apamin receptor in cultured astrocytes from rat brain

M J Seagar et al. Brain Res. .

Abstract

Apamin, an 18-amino acid bee venom peptide, is a specific blocker of a class of Ca2+ activated K+ channels. Mono 125I-iodoapamin was used to detect the K+ channel-associated receptor site in cultured astrocytes from rat brain. Specific high-affinity binding to intact glial cells with a Kd of about 90 pM at 1 degree C and pH 7.5 was demonstrated by equilibrium and kinetic methods. The average receptor capacity was 3 fmol/mg cell protein which is 2 to 3-fold lower than in primary cultured neurons. Binding was stimulated by K+ ions, but to a lesser extent than with neuronal receptors. Photoaffinity labeling of receptor/ion channel components using an arylazide derivative of 125I-monoiodoapamin revealed the presence of the 86- and 33-kDa polypeptides, previously detected in neurones. However a 59-kDa peptide which is present in synaptic membrane preparations from adult rat brain, but not in cultured neurons, was also clearly labeled in intact astrocytes. This indicates that the 59-kDa polypeptide is not a proteolytic fragment of the 86-kDa chain but an associated subunit which is only accessible to photolabeling in certain apamin receptor preparations. Apamin-sensitive Ca2+-activated K+ channels in astrocytes may be one of the pathways by which glial cells redistribute K+ in the central nervous system (CNS).

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources