Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2014 Feb;51(1):46-62.
doi: 10.3109/10408363.2013.870526. Epub 2014 Jan 9.

Dysbetalipoproteinaemia: a mixed hyperlipidaemia of remnant lipoproteins due to mutations in apolipoprotein E

Affiliations
Review

Dysbetalipoproteinaemia: a mixed hyperlipidaemia of remnant lipoproteins due to mutations in apolipoprotein E

A D Marais et al. Crit Rev Clin Lab Sci. 2014 Feb.

Abstract

Atherosclerosis is strongly associated with dyslipoproteinaemia, and especially with increasing concentrations of low-density lipoprotein and decreasing concentrations of high-density lipoproteins. Its association with increasing concentrations of plasma triglyceride is less clear but, within the mixed hyperlipidaemias, dysbetalipoproteinaemia (Fredrickson type III hyperlipidaemia) has been identified as a very atherogenic entity associated with both premature ischaemic heart disease and peripheral arterial disease. Dysbetalipoproteinaemia is characterized by the accumulation of remnants of chylomicrons and of very low-density lipoproteins. The onset occurs after childhood and usually requires an additional metabolic stressor. In women, onset is typically delayed until menopause. Clinical manifestations may vary from no physical signs to severe cutaneous and tendinous xanthomata, atherosclerosis of coronary and peripheral arteries, and pancreatitis when severe hypertriglyceridaemia is present. Rarely, mutations in apolipoprotein E are associated with lipoprotein glomerulopathy, a condition characterized by progressive proteinuria and renal failure with varying degrees of plasma remnant accumulation. Interestingly, predisposing genetic causes paradoxically result in lower than average cholesterol concentration for most affected persons, but severe dyslipidaemia develops in a minority of patients. The disorder stems from dysfunctional apolipoprotein E in which mutations result in impaired binding to low-density lipoprotein (LDL) receptors and/or heparin sulphate proteoglycans. Apolipoprotein E deficiency may cause a similar phenotype. Making a diagnosis of dysbetalipoproteinaemia aids in assessing cardiovascular risk correctly and allows for genetic counseling. However, the diagnostic work-up may present some challenges. Diagnosis of dysbetalipoproteinaemia should be considered in mixed hyperlipidaemias for which the apolipoprotein B concentration is relatively low in relation to the total cholesterol concentration or when there is significant disparity between the calculated LDL and directly measured LDL cholesterol concentrations. Genetic tests are informative in predicting the risk of developing the disease phenotype and are diagnostic only in the context of hyperlipidaemia. Specialised lipoprotein studies in reference laboratory centres can also assist in diagnosis. Fibrates and statins, or even combination treatment, may be required to control the dyslipidaemia.

PubMed Disclaimer

Substances

LinkOut - more resources