Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 May;10(5):1856-63.
doi: 10.1016/j.actbio.2013.12.056. Epub 2014 Jan 7.

Foreign body response to subcutaneous biomaterial implants in a mast cell-deficient Kit(w-Sh) murine model

Affiliations

Foreign body response to subcutaneous biomaterial implants in a mast cell-deficient Kit(w-Sh) murine model

M N Avula et al. Acta Biomater. 2014 May.

Abstract

Mast cells (MCs)_are recognized for their functional role in wound-healing and allergic and inflammatory responses - host responses that are frequently detrimental to implanted biomaterials if extended beyond acute reactivity. These tissue reactions impact especially on the performance of sensing implants such as continuous glucose monitoring (CGM) devices. Our hypothesis that effective blockade of MC activity around implants could alter the host foreign body response (FBR) and enhance the in vivo lifetime of these implantable devices motivated this study. Stem cell factor and its ligand c-KIT receptor are critically important for MC survival, differentiation and degranulation. Therefore, an MC-deficient sash mouse model was used to assess MC relationships to the in vivo performance of CGM implants. Additionally, local delivery of a tyrosine kinase inhibitor (TKI) that inhibits c-KIT activity was also used to evaluate the role of MCs in modulating the FBR. Model sensor implants comprising polyester fibers coated with a rapidly dissolving polymer coating containing drug-releasing degradable microspheres were implanted subcutaneously in sash mice for various time points, and the FBR was evaluated for chronic inflammation and fibrous capsule formation around the implants. No significant differences were observed in the foreign body capsule formation between control and drug-releasing implant groups in MC-deficient mice. However, fibrous encapsulation was significantly greater around the drug-releasing implants in sash mice compared to drug-releasing implants in wild-type (e.g. MC-competent) mice. These results provide insights into the role of MCs in the FBR, suggesting that MC deficiency provides alternative pathways for host inflammatory responses to implanted biomaterials.

Keywords: Combination device; Continuous glucose monitoring sensors; Host response; Inflammation; Local drug delivery.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources