Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Jan 7;9(1):e84678.
doi: 10.1371/journal.pone.0084678. eCollection 2014.

In vivo mitochondrial function in HIV-infected persons treated with contemporary anti-retroviral therapy: a magnetic resonance spectroscopy study

Affiliations

In vivo mitochondrial function in HIV-infected persons treated with contemporary anti-retroviral therapy: a magnetic resonance spectroscopy study

Brendan A I Payne et al. PLoS One. .

Abstract

Modern anti-retroviral therapy is highly effective at suppressing viral replication and restoring immune function in HIV-infected persons. However, such individuals show reduced physiological performance and increased frailty compared with age-matched uninfected persons. Contemporary anti-retroviral therapy is thought to be largely free from neuromuscular complications, whereas several anti-retroviral drugs previously in common usage have been associated with mitochondrial toxicity. It has recently been established that patients with prior exposure to such drugs exhibit irreversible cellular and molecular mitochondrial defects. However the functional significance of such damage remains unknown. Here we use phosphorus magnetic resonance spectroscopy ((31)P-MRS) to measure in vivo muscle mitochondrial oxidative function, in patients treated with contemporary anti-retroviral therapy, and compare with biopsy findings (cytochrome c oxidase (COX) histochemistry). We show that dynamic oxidative function (post-exertional ATP (adenosine triphosphate) resynthesis) was largely maintained in the face of mild to moderate COX defects (affecting up to ∼10% of fibers): τ½ ADP (half-life of adenosine diphosphate clearance), HIV-infected 22.1±9.9 s, HIV-uninfected 18.8±4.4 s, p = 0.09. In contrast, HIV-infected patients had a significant derangement of resting state ATP metabolism compared with controls: ADP/ATP ratio, HIV-infected 1.24±0.08×10(-3), HIV-uninfected 1.16±0.05×10(-3), p = 0.001. These observations are broadly reassuring in that they suggest that in vivo mitochondrial function in patients on contemporary anti-retroviral therapy is largely maintained at the whole organ level, despite histochemical (COX) defects within individual cells. Basal energy requirements may nevertheless be increased.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Phosphorus magnetic resonance spectroscopy.
Resting state metabolic parameters differed significantly between HIV-infected subjects (HIV+) and HIV-uninfected controls (HIV−): ADP/ATP (adenosine diphosphate/ATP) ratio (a), phosphorylation potential (b), and pH (c) (n = 23 each; ADP/ATP, p = 0.001; phosphorylation potential, p = 0.003; pH, p = 0.002). In contrast, the rate of ATP re-synthesis (estimated as τ½ ADP) following exertion was not significantly impaired in HIV-infected subjects compared with controls (p = 0.09) (d).
Figure 2
Figure 2. Relationship of phosphorus magnetic resonance spectroscopy and muscle histochemistry.
Resting state ADP/ATP ratio showed moderate correlation with the percentage frequency of COX deficient muscle fibers in treated HIV-infected subjects (Kendall’s τ = 0.34, p = 0.034) (a), whereas the rate of ATP re-synthesis following exertion (estimated as τ½ ADP) did not (Kendall’s τ = 0.04) (b).

Similar articles

Cited by

References

    1. Arnaudo E, Dalakas M, Shanske S, Moraes CT, DiMauro S, et al. (1991) Depletion of muscle mitochondrial DNA in AIDS patients with zidovudine-induced myopathy. Lancet 337: 508–510. - PubMed
    1. Cote HC, Brumme ZL, Craib KJ, Alexander CS, Wynhoven B, et al. (2002) Changes in mitochondrial DNA as a marker of nucleoside toxicity in HIV-infected patients. N Engl J Med 346: 811–820. - PubMed
    1. Cherry CL, Gahan ME, McArthur JC, Lewin SR, Hoy JF, et al. (2002) Exposure to dideoxynucleosides is reflected in lowered mitochondrial DNA in subcutaneous fat. J Acquir Immune Defic Syndr 30: 271–277. - PubMed
    1. Hoschele D (2006) Cell culture models for the investigation of NRTI-induced mitochondrial toxicity. Relevance for the prediction of clinical toxicity. Toxicol In Vitro 20: 535–546. - PubMed
    1. Lim SE, Copeland WC (2001) Differential incorporation and removal of antiviral deoxynucleotides by human DNA polymerase gamma. J Biol Chem 276: 23616–23623. - PubMed

Publication types

Substances