Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Jun;89(6):959-83.
doi: 10.1085/jgp.89.6.959.

Monovalent and divalent cation permeation in acetylcholine receptor channels. Ion transport related to structure

Monovalent and divalent cation permeation in acetylcholine receptor channels. Ion transport related to structure

J A Dani et al. J Gen Physiol. 1987 Jun.

Abstract

Single channel patch-clamp techniques were used to study nicotinic acetylcholine receptors in cultured rat myotubes. The single channel conductance in pure cesium and sodium levels off at high concentrations, as if a binding site within the channel were saturating. The conductances at very low concentrations, however, are larger than predicted by the simplest one-site transport model fitted to the high-concentration data. At low concentrations, the current-voltage relations are inwardly rectifying, but they become more ohmic if a small amount of divalent cations is added externally. Magnesium and barium are good permeants that have rather high affinities for the channel. Upon adding low millimolar concentrations of these divalent cations externally to a membrane bathed in pure cesium, the inward current carried by cesium is decreased. As more divalent cations are added, the inward-going currents continued to decrease and the divalent cation replaces cesium as the main current carrier. The ion transport data are described by considering the size, shape, and possible net charge of the channel. In that way, even the complex features of transport are explained in a realistic physical framework. The results are consistent with the channel having long, wide, multiply occupied vestibules that serve as transition zones to the short, selective, singly occupied narrow region of the channel. A small amount of net negative charge within the pore could produce concentration-dependent potentials that provide a simple explanation for the more complicated aspects of the permeation properties.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Pflugers Arch. 1981 Aug;391(2):85-100 - PubMed
    1. Nature. 1986 Dec 18-31;324(6098):670-4 - PubMed
    1. Prog Biophys Mol Biol. 1985;46(1):51-96 - PubMed
    1. Nature. 1982 Oct 28;299(5886):793-7 - PubMed
    1. Proc Natl Acad Sci U S A. 1984 Jan;81(1):155-9 - PubMed

Publication types