Dialysate interleukin-6 predicts increasing peritoneal solute transport rate in incident peritoneal dialysis patients
- PMID: 24410736
- PMCID: PMC3893539
- DOI: 10.1186/1471-2369-15-8
Dialysate interleukin-6 predicts increasing peritoneal solute transport rate in incident peritoneal dialysis patients
Abstract
Background: Repeated exposure to peritoneal dialysis (PD) solutions contributes to cumulative intraperitoneal inflammation and peritoneal injury. The present study aimed to explore the capacity of dialysate interleukin-6(IL-6) to a) predict peritoneal membrane function and peritonitis in incident PD patients, and b) to evaluate the influence of neutral pH, low glucose degradation product (GDP) PD solution on dialysate IL-6 levels.
Methods: The study included 88 incident participants from the balANZ trial who had completed 24-months of follow-up. Change in peritoneal solute transport rate (PSTR) and peritonitis were primary outcome measures, and the utility of IL-6 and IL-6 appearance rate (IL-6 AR) in predicting these outcomes was analyzed using multilevel linear regression and Cox proportional hazards models, respectively. Sensitivity analyses were performed by analyzing outcomes in a peritonitis-free cohort (n = 56).
Results: Dialysate IL-6 concentration significantly increased from baseline to 24 months (mean difference 19.07 pg/mL; P < 0.001) but was not affected by the type of PD solution received (P = 0.68). An increase in PSTR from baseline was associated with higher levels of IL-6 (P = 0.004), the use of standard solutions (P = 0.005) and longer PD duration (P < 0.001). Baseline IL-6 level was not associated with a shorter time to first peritonitis (adjusted hazard ratio 1.00, 95% CI 0.99-1.00, P = 0.74). Analysis of IL-6 AR as well as sensitivity analyses in a peritonitis-free cohort yielded comparable results.
Conclusion: Dialysate IL-6 concentration increased with longer PD duration and was a significant, independent predictor of PSTR. The use of biocompatible PD solutions exerted no significant effect on dialysate IL-6 levels but did abrogate the increase in PSTR associated with standard PD solutions. This is the first study to examine the impact of biocompatible solutions on the utility of IL-6 in predicting PSTR and peritonitis.
Figures
References
-
- Dobbie JW. Morphology of the peritoneum in CAPD. Blood Purif. 1989;7(2–3):74–85. - PubMed
-
- Williams JD, Craig KJ, Topley N, Von Ruhland C, Fallon M, Newman GR, Mackenzie RK, Williams GT. Morphologic changes in the peritoneal membrane of patients with renal disease. J Am Soc Nephrol. 2002;13(2):470–479. - PubMed
-
- Fried L. Higher membrane permeability predicts poorer patient survival. Perit Dial Int. 1997;17(4):387–389. - PubMed
-
- Rumpsfeld M, McDonald SP, Johnson DW. Higher peritoneal transport status is associated with higher mortality and technique failure in the Australian and New Zealand peritoneal dialysis patient populations. J Am Soc Nephrol. 2006;17(1):271–278. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
