Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Feb 1:35:392-400.
doi: 10.1016/j.msec.2013.11.028. Epub 2013 Dec 1.

Effect of Cu content on the antibacterial activity of titanium-copper sintered alloys

Affiliations

Effect of Cu content on the antibacterial activity of titanium-copper sintered alloys

Jie Liu et al. Mater Sci Eng C Mater Biol Appl. .

Abstract

The phase constitution and the microstructure Ti-x Cu (x=2, 5, 10 and 25 wt.%) sintered alloys were investigated by XRD and SEM and the antibacterial activity was assessed in order to investigate the effect of the Cu content on the antibacterial activity. The results have shown that Ti2Cu was synthesized as a main secondary phase in all Ti-Cu alloys while Cu-rich phase was formed in the alloys with 5 wt.% or more copper. Antibacterial tests have showed that the Cu content influences the antibacterial rate seriously and only the alloys with 5 wt.% or high Cu have a strong and stable antibacterial rate, which indicates that the Cu content in Ti-Cu alloys must be at least 5 wt.% to obtain strong and stable antibacterial property. The Cu content also influenced the Cu ion release behavior. High Cu ion release concentration and high Cu ion release rate were observed for Ti-Cu alloys with high Cu content. It was concluded that the Cu content affects the Cu existence and the Cu ion release behavior, which in turn influences the antibacterial property. It was thought that the Cu-rich phase should play an important role in the strong antibacterial activity.

Keywords: Antibacterial activity; Antibacterial alloy; Cu-rich phase; Galvanic corrosion; Ti–Cu alloy.

PubMed Disclaimer

Publication types

LinkOut - more resources