Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2014 May:80:45-52.
doi: 10.1016/j.neuropharm.2013.12.024. Epub 2014 Jan 10.

Decoding transcriptional repressor complexes in the adult central nervous system

Affiliations
Review

Decoding transcriptional repressor complexes in the adult central nervous system

Megumi Adachi et al. Neuropharmacology. 2014 May.

Abstract

Cells maintain precise gene expression by balancing transcriptional activation and repression. While much work has focused on elucidating transcriptional activation in the central nervous system (CNS), little is known about transcriptional repression. One means to repress gene expression is to initiate binding of transcription factors to DNA, which then recruit co-repressors as well as other accessory proteins, forming a multi-protein repressor complex. These multi-protein repressor complexes include histone modifying enzymes that trigger processes such as histone acetylation, methylation, and ubiquitylation, altering chromatin structures to impact gene expression. Within these complexes transcriptional repressor proteins per se do not exhibit enzymatic reactions to remodel chromatin structure, whereas histone modifying enzymes lack intrinsic DNA binding activity but have an ability to process post-translational modifications on histones. Thus, the mutual association between transcriptional repressors and histone modifying enzymes is essential to sculpt chromatin to favor transcriptional repression and down regulate gene expression. Additionally, co-repressors are integral components in the context of gene repression as they bridge the association of transcriptional repressors and histone modifying enzymes. In this review, we will discuss the roles of some of the major components of these repressor complex in the CNS as well as their cellular functions that may underlie fundamental behavior in animals.

Keywords: Behavior; CNS; HDACs; MeCP2; REST; Synapse; Transcription.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Composition of repressor complexes in the adult brain

References

    1. Adachi M, Autry AE, Covington HE, 3rd, Monteggia LM. MeCP2-mediated transcription repression in the basolateral amygdala may underlie heightened anxiety in a mouse model of Rett syndrome. J Neurosci. 2009;29:4218–4227. - PMC - PubMed
    1. Akhtar MW, Raingo J, Nelson ED, Montgomery RL, Olson EN, Kavalali ET, Monteggia LM. Histone deacetylases 1 and 2 form a evelopmental switch that controls excitatory synapse maturation and function. J Neurosci. 2009;29:8288–8297. - PMC - PubMed
    1. Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet. 1999;23:185–188. - PubMed
    1. Andres ME, Burger C, Peral-Rubio MJ, Battaglioli E, Anderson ME, Grimes J, Dallman J, Ballas N, Mandel G. CoREST: a functional corepressor required for regulation of neural-specific gene expression. Proc Natl Acad Sci U S A. 1999;96:9873–9878. - PMC - PubMed
    1. Aoki H, Hara A, Era T, Kunisada T, Yamada Y. Genetic ablation of Rest leads to in vitro-specific derepression of neuronal genes during neurogenesis. Development. 2012;139:667–677. - PubMed

Publication types

MeSH terms