Cancer stem cells: a systems biology view of their role in prognosis and therapy
- PMID: 24418909
- PMCID: PMC4010870
- DOI: 10.1097/CAD.0000000000000075
Cancer stem cells: a systems biology view of their role in prognosis and therapy
Abstract
Evidence has accumulated that characterizes highly tumorigenic cancer cells residing in heterogeneous populations. The accepted term for such a subpopulation is cancer stem cells (CSCs). While many questions still remain about their precise role in the origin, progression, and drug resistance of tumors, it is clear they exist. In this review, a current understanding of the nature of CSC, their potential usefulness in prognosis, and the need to target them will be discussed. In particular, separate studies now suggest that the CSC is plastic in its phenotype, toggling between tumorigenic and nontumorigenic states depending on both intrinsic and extrinsic conditions. Because of this, a static view of gene and protein levels defined by correlations may not be sufficient to either predict disease progression or aid in the discovery and development of drugs to molecular targets leading to cures. Quantitative dynamic modeling, a bottom up systems biology approach whereby signal transduction pathways are described by differential equations, may offer a novel means to overcome the challenges of oncology today. In conclusion, the complexity of CSCs can be captured in mathematical models that may be useful for selecting molecular targets, defining drug action, and predicting sensitivity or resistance pathways for improved patient outcomes.
Conflict of interest statement
The author has no conflicts of interest to declare.
Figures
References
-
- Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994;367:645–8. - PubMed
-
- Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature medicine. 1997;3:730–7. - PubMed
-
- Wang JC, Lapidot T, Cashman JD, Doedens M, Addy L, Sutherland DR, et al. High level engraftment of NOD/SCID mice by primitive normal and leukemic hematopoietic cells from patients with chronic myeloid leukemia in chronic phase. Blood. 1998;91:2406–14. - PubMed
-
- O’Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature. 2007;445:106–10. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
