Sodium/proton antiporter in Streptococcus faecalis
- PMID: 2442134
- PMCID: PMC213682
- DOI: 10.1128/jb.169.9.3886-3890.1987
Sodium/proton antiporter in Streptococcus faecalis
Abstract
Streptococcus faecalis, like other bacteria, accumulates potassium ions and expels sodium ions. This paper is concerned with the pathway of sodium extrusion. Earlier studies (D.L. Heefner and F.M. Harold, Proc. Natl. Acad. Sci. USA 79:2798-2802, 1982) showed that sodium extrusion is effected by a primary, ATP-linked sodium pump. I report here that cells grown under conditions in which sodium ATPase is not induced can still expel sodium ions. This finding suggested the existence of an alternate pathway. Sodium extrusion by the alternate pathway requires the cells to generate a proton motive force. This conclusion rests on the following observations. (i) Sodium extrusion required glucose. (ii) Sodium extrusion was observed at neutral pH, which allows the cells to generate a proton motive force, but not at alkaline pH, which reduces the proton motive force to zero. (iii) Sodium extrusion was inhibited by the addition of dicyclohexylcarbodiimide and of proton-conducting ionophores. (iv) In response to an artificial pH gradient (with the exterior acid), energy-depleted cells exhibited a transient sodium extrusion which was unaffected by treatments that dissipated the membrane potential and which was blocked by proton conductors. I propose that streptococci have two independent systems for sodium extrusion: an inducible sodium ATPase and a constitutive sodium/proton antiporter.
Similar articles
-
ATP-linked sodium transport in Streptococcus faecalis. I. The sodium circulation.J Biol Chem. 1980 Dec 10;255(23):11396-402. J Biol Chem. 1980. PMID: 6777378
-
ATP-driven exchange of Na+ and K+ ions by Streptococcus faecalis.J Biol Chem. 1985 Feb 25;260(4):2086-91. J Biol Chem. 1985. PMID: 2857711
-
ATP-driven sodium pump in Streptococcus faecalis.Proc Natl Acad Sci U S A. 1982 May;79(9):2798-802. doi: 10.1073/pnas.79.9.2798. Proc Natl Acad Sci U S A. 1982. PMID: 6283545 Free PMC article.
-
Ion extrusion systems in bacteria.Ann N Y Acad Sci. 1985;456:235-44. doi: 10.1111/j.1749-6632.1985.tb14870.x. Ann N Y Acad Sci. 1985. PMID: 2418727 Review. No abstract available.
-
Primary and secondary transport of cations in bacteria.Ann N Y Acad Sci. 1985;456:375-83. doi: 10.1111/j.1749-6632.1985.tb14888.x. Ann N Y Acad Sci. 1985. PMID: 2418733 Review. No abstract available.
Cited by
-
The Na+-responsive ntp operon is indispensable for homeostatis of K+ and Na+ in Enterococcus hirae at limited proton potential.J Bacteriol. 1998 Sep;180(18):4942-5. doi: 10.1128/JB.180.18.4942-4945.1998. J Bacteriol. 1998. PMID: 9733699 Free PMC article.
-
Autoaggregation response of Fusobacterium nucleatum.Appl Environ Microbiol. 2009 Dec;75(24):7725-33. doi: 10.1128/AEM.00916-09. Epub 2009 Oct 16. Appl Environ Microbiol. 2009. PMID: 19837836 Free PMC article.
-
Inorganic cation transport and energy transduction in Enterococcus hirae and other streptococci.Microbiol Mol Biol Rev. 1998 Dec;62(4):1021-45. doi: 10.1128/MMBR.62.4.1021-1045.1998. Microbiol Mol Biol Rev. 1998. PMID: 9841664 Free PMC article. Review.
-
Evidence for Na(+) influx via the NtpJ protein of the KtrII K(+) uptake system in Enterococcus hirae.J Bacteriol. 2000 May;182(9):2507-12. doi: 10.1128/JB.182.9.2507-2512.2000. J Bacteriol. 2000. PMID: 10762252 Free PMC article.
-
Functionally cloned pdrM from Streptococcus pneumoniae encodes a Na(+) coupled multidrug efflux pump.PLoS One. 2013;8(3):e59525. doi: 10.1371/journal.pone.0059525. Epub 2013 Mar 26. PLoS One. 2013. PMID: 23555691 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources