Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Sep 15;262(26):12570-4.

Maintenance of intracellular calcium in Escherichia coli

  • PMID: 2442165
Free article

Maintenance of intracellular calcium in Escherichia coli

P Gangola et al. J Biol Chem. .
Free article

Abstract

Recently a series of fluorescent calcium indicator dyes have been developed for measurement of free intracellular calcium in eukaryotic cells. Here we report the use of one such dye, fura-2, for the study of intracellular calcium levels in the prokaryote Escherichia coli. Cells of E. coli were loaded with the membrane-permeable acetoxymethyl ester of fura-2, which was cleaved intracellularly to give the free pentaacid. The concentration of free [Ca2+]i in unstarved cells was maintained at 90 +/- 10 nM, irrespective of the Ca2+ concentration in the extracellular medium. Cells of a strain lacking the H+-translocating ATPase were depleted of endogenous energy reserves and loaded with calcium. In this strain oxidative phosphorylation is uncoupled, so ATP is not produced by respiration. In starved cells [Ca2+]i varied from 0.2 to 0.7 microM when the loading Ca2+ concentration varied from 10 microM to 10 mM. Addition of glucose lowered the Ca2+ levels to 90 nM. Addition of respiratory substrates as energy donors produced cyanide-sensitive efflux. Total cell Ca2+ increased in parallel to the extracellular calcium, but the pool of free calcium did not equilibrate with the total cellular pool. These results demonstrate that 1) the pool of total Ca2+ in the bacterial cell is large and responds to extracellular calcium, 2) the free [Ca2+]i is independent of extracellular calcium, and 3) energy in the form of a proton motive force is required for maintenance of the free intracellular pool of calcium.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources