Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 2014 Jan 8;9(1):e83736.
doi: 10.1371/journal.pone.0083736. eCollection 2014.

Strong relationship between oral dose and tenofovir hair levels in a randomized trial: hair as a potential adherence measure for pre-exposure prophylaxis (PrEP)

Affiliations
Clinical Trial

Strong relationship between oral dose and tenofovir hair levels in a randomized trial: hair as a potential adherence measure for pre-exposure prophylaxis (PrEP)

Albert Y Liu et al. PLoS One. .

Abstract

Background: Pre-exposure prophylaxis (PrEP) trials using tenofovir-based regimens have demonstrated that high levels of adherence are required to evaluate efficacy; the incorporation of objective biomarkers of adherence in trial design has been essential to interpretation, given the inaccuracy of self-report. Antiretroviral measurements in scalp hair have been useful as a marker of long-term exposure in the HIV treatment setting, and hair samples are relatively easy and inexpensive to collect, transport, and store for analysis. To evaluate the relationship between dose and tenofovir concentrations in hair, we examined the dose proportionality of tenofovir in hair in healthy, HIV-uninfected adults.

Methods: A phase I, crossover pharmacokinetic study was performed in 24 HIV-negative adults receiving directly-observed oral tenofovir tablets administered 2, 4, and 7 doses/week for 6 weeks, with a ≥3-week break between periods. Small samples of hair were collected after each six-week period and analyzed for tenofovir concentrations. Geometric-mean-ratios compared levels between each pair of dosing conditions. Intensive plasma pharmacokinetic studies were performed during the daily-dosing period to calculate areas-under-the-time-concentration curves (AUCs).

Results: Over 90% of doses were observed per protocol. Median tenofovir concentrations in hair increased monotonically with dose. A log-linear relationship was seen between dose and hair levels, with an estimated 76% (95% CI 60-93%) increase in hair level per 2-fold dose increase. Tenofovir plasma AUCs modestly predicted drug concentrations in hair.

Conclusions: This study found a strong linear relationship between frequency of dosing and tenofovir levels in scalp hair. The analysis of quantitative drug levels in hair has the potential to improve adherence measurement in the PrEP field and may be helpful in determining exposure thresholds for protection and explaining failures in PrEP trials. Hair measures for adherence monitoring may also facilitate adherence measurement in real-world settings and merit further investigation in upcoming PrEP implementation studies and programs.

Trial registration: ClinicalTrials.gov NCT00903084.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: Robert Grant received 3 grants to support meals and lodging for study personnel to attend annual investigator meetings and 1 grant to support a study video project. Monica Gandhi received payment for participating in a one-time advisory board meeting of Gilead (March 2012). This does not alter the authors' adherence to all the PLOS ONE policies on sharing data and materials.

Figures

Figure 1
Figure 1. CONSORT flowchart for STRAND study.
Figure 2
Figure 2. Dosing scheme for the STRAND Study.
Figure 3
Figure 3. Spaghetti plot of tenofovir (TFV) concentrations.
Hair TFV concentrations for each subject are shown for each dosing period. Each line represents drug concentration data from one participant (at 2, 4, and 7 doses/week). The red line distinguishes between hair scalp concentrations for 2 vs. 7 doses/week. ng/mg = nanogram/milligram.

References

    1. Cohen MS, Chen YQ, McCauley M, Gamble T, Hosseinipour MC, et al. (2011) Prevention of HIV-1 infection with early antiretroviral therapy. N Engl J Med 365: 493–505. - PMC - PubMed
    1. Grant RM, Lama JR, Anderson PL, McMahan V, Liu AY, et al. (2010) Preexposure chemoprophylaxis for HIV prevention in men who have sex with men. N Engl J Med 363: 2587–2599. - PMC - PubMed
    1. Baeten JM, Donnell D, Ndase P, Mugo NR, Campbell JD, et al. (2012) Antiretroviral prophylaxis for HIV prevention in heterosexual men and women. N Engl J Med 367: 399–410. - PMC - PubMed
    1. Thigpen MC, Kebaabetswe PM, Paxton LA, Smith DK, Rose CE, et al. (2012) Antiretroviral preexposure prophylaxis for heterosexual HIV transmission in Botswana. N Engl J Med 367: 423–434. - PubMed
    1. Choopanya K, Martin M, Suntharasamai P, Sangkum U, Mock PA, et al. (2013) Antiretroviral prophylaxis for HIV infection in injecting drug users in Bangkok, Thailand (the Bangkok Tenofovir Study): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet 381: 2083–2090. - PubMed

Publication types

Associated data