Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Aug;86(2):286-93.
doi: 10.1038/ki.2013.530. Epub 2014 Jan 15.

Impaired vitamin K recycling in uremia is rescued by vitamin K supplementation

Affiliations
Free article

Impaired vitamin K recycling in uremia is rescued by vitamin K supplementation

Nadine Kaesler et al. Kidney Int. 2014 Aug.
Free article

Abstract

In chronic kidney disease, vitamin K-dependent proteins, including the calcification inhibitor matrix Gla protein, are largely uncarboxylated indicating that functional vitamin K deficiency may contribute to uremic vascular calcification. Since the effects of uremia on the vitamin K cycle are unknown, we investigated the influence of uremia and vitamin K supplementation on the activity of the vitamin K cycle and extraosseous calcification. Uremia was induced in rats by an adenine-supplemented diet and vitamin K1 or K2 was administered over 4 and 7 weeks. After 4 weeks of adenine diet, the activity of the vitamin K cycle enzyme γ-carboxylase but not the activities of DT-diaphorase or vitamin K epoxide reductase were reduced. Serum levels of undercarboxylated matrix Gla protein increased, indicating functional vitamin K deficiency. There was no light microscopy-detectable calcification at this stage but chemically determined aortic and renal calcium content was increased. Vitamin K treatment reduced aortic and renal calcium content after 4 weeks. Seven weeks of uremia induced overt calcification in the aorta, heart, and kidneys; however, addition of vitamin K restored intrarenal γ-carboxylase activity and overstimulated it in the liver along with reducing heart and kidney calcification. Thus, uremic vitamin K deficiency may partially result from a reduction of the γ-carboxylase activity which possibly contributes to calcification. Pharmacological vitamin K supplementation restored the vitamin K cycle and slowed development of soft tissue calcification in experimental uremia.

PubMed Disclaimer

Comment in

MeSH terms

LinkOut - more resources