Deep RNA sequencing reveals dynamic regulation of myocardial noncoding RNAs in failing human heart and remodeling with mechanical circulatory support
- PMID: 24429688
- PMCID: PMC3967509
- DOI: 10.1161/CIRCULATIONAHA.113.003863
Deep RNA sequencing reveals dynamic regulation of myocardial noncoding RNAs in failing human heart and remodeling with mechanical circulatory support
Abstract
Background: Microarrays have been used extensively to profile transcriptome remodeling in failing human heart, although the genomic coverage provided is limited and fails to provide a detailed picture of the myocardial transcriptome landscape. Here, we describe sequencing-based transcriptome profiling, providing comprehensive analysis of myocardial mRNA, microRNA (miRNA), and long noncoding RNA (lncRNA) expression in failing human heart before and after mechanical support with a left ventricular (LV) assist device (LVAD).
Methods and results: Deep sequencing of RNA isolated from paired nonischemic (NICM; n=8) and ischemic (ICM; n=8) human failing LV samples collected before and after LVAD and from nonfailing human LV (n=8) was conducted. These analyses revealed high abundance of mRNA (37%) and lncRNA (71%) of mitochondrial origin. miRNASeq revealed 160 and 147 differentially expressed miRNAs in ICM and NICM, respectively, compared with nonfailing LV. Among these, only 2 (ICM) and 5 (NICM) miRNAs are normalized with LVAD. RNASeq detected 18 480, including 113 novel, lncRNAs in human LV. Among the 679 (ICM) and 570 (NICM) lncRNAs differentially expressed with heart failure, ≈10% are improved or normalized with LVAD. In addition, the expression signature of lncRNAs, but not miRNAs or mRNAs, distinguishes ICM from NICM. Further analysis suggests that cis-gene regulation represents a major mechanism of action of human cardiac lncRNAs.
Conclusions: The myocardial transcriptome is dynamically regulated in advanced heart failure and after LVAD support. The expression profiles of lncRNAs, but not mRNAs or miRNAs, can discriminate failing hearts of different pathologies and are markedly altered in response to LVAD support. These results suggest an important role for lncRNAs in the pathogenesis of heart failure and in reverse remodeling observed with mechanical support.
Keywords: RNA, long noncoding; deep sequencing; heart failure; ventricular assist device.
Figures







Comment in
-
Decoding the noncoding transcripts in human heart failure.Circulation. 2014 Mar 4;129(9):958-60. doi: 10.1161/CIRCULATIONAHA.114.007548. Epub 2014 Jan 15. Circulation. 2014. PMID: 24429689 Free PMC article. No abstract available.
References
-
- Hannenhalli S, Putt ME, Gilmore JM, Wang J, Parmacek MS, Epstein JA, Morrisey EE, Margulies KB, Cappola TP. Transcriptional genomics associates FOX transcription factors with human heart failure. Circulation. 2006;114:1269–1276. - PubMed
-
- Kittleson MM, Ye SQ, Irizarry RA, Minhas KM, Edness G, Conte JV, Parmigiani G, Miller LW, Chen Y, Hall JL, Garcia JG, Hare JM. Identification of a gene expression profile that differentiates between ischemic and nonischemic cardiomyopathy. Circulation. 2004;110:3444–3451. - PubMed
-
- Margulies KB, Matiwala S, Cornejo C, Olsen H, Craven WA, Bednarik D. Mixed messages: transcription patterns in failing and recovering human myocardium. Circ Res. 2005;96:592–599. - PubMed
-
- Matkovich SJ, DJ Van Booven, Youker KA, Torre-Amione G, Diwan A, Eschenbacher WH, Dorn LE, Watson MA, Margulies KB, Dorn GW., 2nd Reciprocal regulation of myocardial microRNAs and messenger RNA in human cardiomyopathy and reversal of the microRNA signature by biomechanical support. Circulation. 2009;119:1263–1271. - PMC - PubMed
-
- Ramani R, Vela D, Segura A, McNamara D, Lemster B, Samarendra V, Kormos R, Toyoda Y, Bermudez C, Frazier OH, Moravec CS, Gorcsan J, 3rd, Taegtmeyer H, McTiernan CF. A micro-ribonucleic acid signature associated with recovery from assist device support in 2 groups of patients with severe heart failure. J Am Coll Cardiol. 2011;58:2270–2278. - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases