Brain regional vulnerability to anaesthesia-induced neuroapoptosis shifts with age at exposure and extends into adulthood for some regions
- PMID: 24431386
- PMCID: PMC4148607
- DOI: 10.1093/bja/aet469
Brain regional vulnerability to anaesthesia-induced neuroapoptosis shifts with age at exposure and extends into adulthood for some regions
Abstract
Background: General anaesthesia facilitates surgical operations and painful interventions in millions of patients every year. Recent observations of anaesthetic-induced neuronal cell death in newborn animals have raised substantial concerns for young children undergoing anaesthesia. However, it remains unclear why some brain regions are more affected than others, why certain neurones are eliminated while neighbouring cells are seemingly unaffected, and what renders the developing brain exquisitely vulnerable, while the adult brain apparently remains resistant to the phenomenon.
Methods: Neonatal (P7), juvenile (P21), and young adult mice (P49) were anaesthetized with 1.5% isoflurane. At the conclusion of anaesthesia, activated cleaved caspase 3 (AC3), a marker of apoptotic cell death, was quantified in the neocortex (RSA), caudoputamen (CPu), hippocampal CA1 and dentate gyrus (DG), cerebellum (Cb), and olfactory bulb (GrO) and compared with that found in unanaesthetized littermates.
Results: After anaesthetic exposure, increased AC3 was detected in neonatal mice in RSA (11-fold, compared with controls), CPu (10-fold), CA1 (three-fold), Cb (four-fold), and GrO (four-fold). Surprisingly, AC3 continued to be elevated in the DG and GrO of juvenile (15- and 12-fold, respectively) and young adult mice (two- and four-fold, respectively).
Conclusions: The present study confirms the findings of previous studies showing peak vulnerability to anaesthesia-induced neuronal cell death in the newborn forebrain. It also shows sustained susceptibility into adulthood in areas of continued neurogenesis, substantially expanding the previously observed age of vulnerability. The differential windows of vulnerability among brain regions, which closely follow regional peaks in neurogenesis, may explain the heightened vulnerability of the developing brain because of its increased number of immature neurones.
Keywords: anaesthesia, paediatric; anaesthetics volatile, isoflurane; brain, injury; safety, drug; toxicity.
© The Author [2014]. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Figures
References
-
- Weiser TG, Regenbogen SE, Thompson KD, et al. An estimation of the global volume of surgery: a modelling strategy based on available data. Lancet. 2008;372:139–44. - PubMed
-
- Istaphanous GK, Ward CG, Loepke AW. The impact of the perioperative period on neurocognitive development, with a focus on pharmacological concerns. Best Pract Res Clin Anaesthesiol. 2010;24:433–49. - PubMed
-
- Jevtovic-Todorovic V. Anesthesia and the developing brain: are we getting closer to understanding the truth? Curr Opin Anaesthesiol. 2011;24:395–9. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous
