Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Sep 18;903(1):48-55.
doi: 10.1016/0005-2736(87)90154-4.

Interactions of diphtheria toxin with lipid vesicles: determinants of ion channel formation

Affiliations

Interactions of diphtheria toxin with lipid vesicles: determinants of ion channel formation

J W Shiver et al. Biochim Biophys Acta. .

Abstract

Lipid vesicles have been utilized to study the interactions of diphtheria toxin (DT) with membranes. The assay for DT ion channel formation was fluorescence-detected membrane potential depolarization of vesicles in which valinomycin-induced potassium diffusion gradients had been generated. The following requirements for ion channel formation have been identified: (1) acid pH (less than 5); (2) trans-negative membrane potentials (35-fold increase in channel-forming activity from -6 mV to -59 mV); and (3) negatively charged phospholipid headgroups (about 100-fold more activity using vesicles formed from asolectin compared to soybean phosphatidylcholine). Concentration dependence plots of toxin activity showed a linear response with logarithmic slopes of nearly one for each lipid composition. These results show a close parallel to those obtained previously with planar lipid bilayers and thus provide guidelines for conditions which facilitate functional insertion of the toxin into vesicles.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources