Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Mar:155:84-90.
doi: 10.1016/j.biortech.2013.12.094. Epub 2013 Dec 30.

Effect of presence of cellulose in the freshwater sediment on the performance of sediment microbial fuel cell

Affiliations

Effect of presence of cellulose in the freshwater sediment on the performance of sediment microbial fuel cell

T K Sajana et al. Bioresour Technol. 2014 Mar.

Abstract

The performance of sediment microbial fuel cells (SMFCs) was evaluated in the presence of cellulose in the aquaculture pond sediment as 2% (w/w) in SMFC-2, 4% in SMFC-3 and without adding cellulose in SMFC-1. From aquaculture water, average chemical oxygen demand (COD) and total nitrogen (TN) removal efficiencies of 80.6±0.3% and 83.0±0.01% were obtained in SMFC-1, 88.2±0.5% and 89.6±0.8% in SMFC-2 and 83.1±0.3% and 64.5±1.6% in SMFC-3, respectively. During the complete experimental period, acetic acid was the only short chain fatty acid detected in all three SMFCs. Sediment organic matter removal in SMFC-1, SMFC-2 and SMFC-3 were 16%, 22% and 18.6%, respectively. SMFCs demonstrated effective cellulose degradation from aquaculture pond sediment and maintained the oxidized sediment top layer favourable for aquaculture.

Keywords: Aquaculture water remediation; Cellulose degradation; Freshwater sediment; Sediment microbial fuel cell.

PubMed Disclaimer

MeSH terms

LinkOut - more resources