Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013:4:2763.
doi: 10.1038/ncomms3763.

A Ca(2+)-dependent signalling circuit regulates influenza A virus internalization and infection

Affiliations
Free article

A Ca(2+)-dependent signalling circuit regulates influenza A virus internalization and infection

Yoichiro Fujioka et al. Nat Commun. 2013.
Free article

Abstract

Various viruses enter host cells via endocytosis, but the molecular mechanisms underlying the specific internalization pathways remain unclear. Here we show that influenza A viruses (IAVs) enter cells via redundant pathways of clathrin-mediated and clathrin-independent endocytosis, with intracellular Ca(2+) having a central role in regulation of both pathways by activating a signalling axis comprising RhoA, Rho-kinase, phosphatidylinositol 4-phosphate 5-kinase (PIP5K) and phospholipase C (PLC). IAV infection induces oscillations in the cytosolic Ca(2+) concentration of host cells, the prevention of which markedly attenuates virus internalization and infection. The small GTPase RhoA is found both to function downstream of the virus-induced Ca(2+) response and itself to induce Ca(2+) oscillations in a manner dependent on Rho-kinase and subsequent PIP5K-PLC signalling. This signalling circuit regulates both clathrin-mediated and clathrin-independent endocytosis during virus infection and seems to constitute a key mechanism for regulation of IAV internalization and infection.

PubMed Disclaimer

Publication types

Substances