A SIEVE M-THEOREM FOR BUNDLED PARAMETERS IN SEMIPARAMETRIC MODELS, WITH APPLICATION TO THE EFFICIENT ESTIMATION IN A LINEAR MODEL FOR CENSORED DATA
- PMID: 24436500
- PMCID: PMC3890689
A SIEVE M-THEOREM FOR BUNDLED PARAMETERS IN SEMIPARAMETRIC MODELS, WITH APPLICATION TO THE EFFICIENT ESTIMATION IN A LINEAR MODEL FOR CENSORED DATA
Abstract
In many semiparametric models that are parameterized by two types of parameters - a Euclidean parameter of interest and an infinite-dimensional nuisance parameter, the two parameters are bundled together, i.e., the nuisance parameter is an unknown function that contains the parameter of interest as part of its argument. For example, in a linear regression model for censored survival data, the unspecified error distribution function involves the regression coefficients. Motivated by developing an efficient estimating method for the regression parameters, we propose a general sieve M-theorem for bundled parameters and apply the theorem to deriving the asymptotic theory for the sieve maximum likelihood estimation in the linear regression model for censored survival data. The numerical implementation of the proposed estimating method can be achieved through the conventional gradient-based search algorithms such as the Newton-Raphson algorithm. We show that the proposed estimator is consistent and asymptotically normal and achieves the semiparametric efficiency bound. Simulation studies demonstrate that the proposed method performs well in practical settings and yields more efficient estimates than existing estimating equation based methods. Illustration with a real data example is also provided.
Keywords: Accelerated failure time model; B-spline; bundled parameters; efficient score function; semiparametric efficiency; sieve maximum likelihood estimation.
Similar articles
-
Collaborative double robust targeted maximum likelihood estimation.Int J Biostat. 2010 May 17;6(1):Article 17. doi: 10.2202/1557-4679.1181. Int J Biostat. 2010. PMID: 20628637 Free PMC article.
-
Semiparametric Maximum Likelihood Estimation in Normal Transformation Models for Bivariate Survival Data.Biometrika. 2008 Dec;95(4):947-960. doi: 10.1093/biomet/asn049. Biometrika. 2008. PMID: 19079778 Free PMC article.
-
Semiparametric efficient estimation for additive hazards regression with case II interval-censored survival data.Lifetime Data Anal. 2020 Oct;26(4):708-730. doi: 10.1007/s10985-020-09496-z. Epub 2020 Mar 10. Lifetime Data Anal. 2020. PMID: 32157479
-
Semiparametric estimation of the accelerated failure time model with partly interval-censored data.Biometrics. 2017 Dec;73(4):1161-1168. doi: 10.1111/biom.12700. Epub 2017 Apr 25. Biometrics. 2017. PMID: 28444688 Free PMC article.
-
Additive hazards model with auxiliary subgroup survival information.Lifetime Data Anal. 2019 Jan;25(1):128-149. doi: 10.1007/s10985-018-9426-7. Epub 2018 Feb 22. Lifetime Data Anal. 2019. PMID: 29470696 Review.
Cited by
-
Copula-based score test for bivariate time-to-event data, with application to a genetic study of AMD progression.Lifetime Data Anal. 2019 Jul;25(3):546-568. doi: 10.1007/s10985-018-09459-5. Epub 2018 Dec 17. Lifetime Data Anal. 2019. PMID: 30560439 Free PMC article.
-
A general semiparametric Z-estimation approach for case-cohort studies.Stat Sin. 2013 Jul 1;23(3):1155-1180. Stat Sin. 2013. PMID: 24489449 Free PMC article.
-
Semiparametric estimation of the accelerated mean model with panel count data under informative examination times.Biometrics. 2018 Sep;74(3):944-953. doi: 10.1111/biom.12840. Epub 2017 Dec 29. Biometrics. 2018. PMID: 29286532 Free PMC article.
-
ESTIMATING MEAN SURVIVAL TIME: WHEN IS IT POSSIBLE?Scand Stat Theory Appl. 2015 Jun 1;42(2):397-413. doi: 10.1111/sjos.12112. Scand Stat Theory Appl. 2015. PMID: 26019387 Free PMC article.
-
Semiparametric copula method for semi-competing risks data subject to interval censoring and left truncation: Application to disability in elderly.Stat Methods Med Res. 2023 Apr;32(4):656-670. doi: 10.1177/09622802221133552. Epub 2023 Feb 3. Stat Methods Med Res. 2023. PMID: 36735020 Free PMC article.
References
-
- Ai C, Chen X. Efficient estimation of models with conditional moment restrictions containing unknown functions. Econometrica. 2003;71:1795–1843.
-
- Buckley J, James I. Linear Regression with Censored Data. Biometrika. 1979;66:429–436.
-
- Chamberlain G. Asymptotic Efficiency in Estimation with Conditional Moment Restrictions. Journal of Econometrics. 1987;34:305–334.
-
- Chen X. Large Sample Sieve Estimation of Semi-nonparametric Models. In: Heckman JJ, Leamer EE, editors. Handbook of Econometrics, Volumn 6B. Elsevier; 2007. pp. 5549–5632.
-
- Chen X, Linton O, Van Keilegom I. Estimation of semiparametric models when the criterion function is not smooth. Econometrica. 2003;71:1591–1608.
Grants and funding
LinkOut - more resources
Full Text Sources