Action potential repolarization and a fast after-hyperpolarization in rat hippocampal pyramidal cells
- PMID: 2443676
- PMCID: PMC1192370
- DOI: 10.1113/jphysiol.1987.sp016517
Action potential repolarization and a fast after-hyperpolarization in rat hippocampal pyramidal cells
Abstract
1. The repolarization of the action potential, and a fast after-hyperpolarization (a.h.p.) were studied in CA1 pyramidal cells (n = 76) in rat hippocampal slices (28-37 degrees C). Single spikes were elicited by brief (1-3 ms) current pulses, at membrane potentials close to rest (-60 to -70 mV). 2. Each action potential was followed by four after-potentials: (a) the fast a.h.p., lasting 2-5 ms; (b) an after-depolarization; (c) a medium a.h.p., (50-100 ms); and (d) a slow a.h.p. (1-2 s). Both the fast a.h.p. and the slow a.h.p. (but not the medium a.h.p.) were inhibited by Ca2+-free medium or Ca2+-channel blockers (Co2+, Mn2+ or Cd2+); but tetraethylammonium (TEA; 0.5-2 nM) blocked only the fast a.h.p., and noradrenaline (2-5 microM) only the slow a.h.p. This suggests that two Ca2+-activated K+ currents were involved: a fast, TEA-sensitive one (IC) underlying the fast a.h.p., and a slow noradrenaline-sensitive one (IAHP) underlying the slow a.h.p. 3. Like the fast a.h.p., spike repolarization seems to depend on a Ca2+-dependent K+ current of the fast, TEA-sensitive kind (IC). The repolarization was slowed by Ca2+-free medium, Co2+, Mn2+, Cd2+, or TEA, but not by noradrenaline. Charybdotoxin (CTX; 30 nM), a scorpion toxin which blocks the large-conductance Ca2+-activated K+ channel in muscle, had a similar effect to TEA. The effects of TEA and Cd2+ (or Mn2+) showed mutual occlusion. Raising the external K+ concentration reduced the fast a.h.p. and slowed the spike repolarization, whereas Cl- loading of the cell was ineffective. 4. The transient K+ current, IA, seems also to contribute to spike repolarization, because: (a) 4-aminopyridine (4-AP; 0.1 mM), which blocks IA, slowed the spike repolarization; (b) depolarizing pre-pulses, which inactivate IA, had a similar effect; (c) hyperpolarizing pre-pulses speeded up the spike repolarization; (d) the effects of 4-AP and pre-pulses persisted during Ca2+ blockade (like IA); and (e) depolarizing pre-pulses reduced the effect of 4-AP. 5. Pre-pulses or 4-AP broadened the spike less, and in a different manner, than Ca2+-free medium, Cd2+, Co2+, Mn2+, TEA or CTX. The former broadening was uniform, with little effect on the fast a.h.p., whereas the latter affected mostly the last two-thirds of the spike repolarization and abolished the fast a.h.p.(ABSTRACT TRUNCATED AT 400 WORDS)
Similar articles
-
Properties of two calcium-activated hyperpolarizations in rat hippocampal neurones.J Physiol. 1987 Aug;389:187-203. doi: 10.1113/jphysiol.1987.sp016653. J Physiol. 1987. PMID: 2445972 Free PMC article.
-
Different mechanisms underlying the repolarization of narrow and wide action potentials in pyramidal cells and interneurons of cat motor cortex.Neuroscience. 1996 Jul;73(1):57-68. doi: 10.1016/0306-4522(96)00010-3. Neuroscience. 1996. PMID: 8783229
-
Ionic conductances contributing to spike repolarization and after-potentials in rat medial vestibular nucleus neurones.J Physiol. 1994 Nov 15;481 ( Pt 1)(Pt 1):61-77. doi: 10.1113/jphysiol.1994.sp020419. J Physiol. 1994. PMID: 7531769 Free PMC article.
-
Potassium currents in hippocampal pyramidal cells.Prog Brain Res. 1990;83:161-87. doi: 10.1016/s0079-6123(08)61248-0. Prog Brain Res. 1990. PMID: 2203097 Review.
-
Voltage-dependent conductances of solitary ganglion cells dissociated from the rat retina.J Physiol. 1987 Apr;385:361-91. doi: 10.1113/jphysiol.1987.sp016497. J Physiol. 1987. PMID: 2443669 Free PMC article. Review.
Cited by
-
Persistence and storage of activity patterns in spiking recurrent cortical networks: modulation of sigmoid signals by after-hyperpolarization currents and acetylcholine.Front Comput Neurosci. 2012 Jun 29;6:42. doi: 10.3389/fncom.2012.00042. eCollection 2012. Front Comput Neurosci. 2012. PMID: 22754524 Free PMC article.
-
BK channels sustain neuronal Ca2+ oscillations to support hippocampal long-term potentiation and memory formation.Cell Mol Life Sci. 2023 Nov 21;80(12):369. doi: 10.1007/s00018-023-05016-y. Cell Mol Life Sci. 2023. PMID: 37989805 Free PMC article.
-
Learning Universal Computations with Spikes.PLoS Comput Biol. 2016 Jun 16;12(6):e1004895. doi: 10.1371/journal.pcbi.1004895. eCollection 2016 Jun. PLoS Comput Biol. 2016. PMID: 27309381 Free PMC article.
-
A rapidly inactivating Ca2(+)-dependent K+ current in pheochromocytoma cells (PC12) of the rat.Pflugers Arch. 1990 Jan;415(4):425-32. doi: 10.1007/BF00373619. Pflugers Arch. 1990. PMID: 2315004
-
Phase-resetting curve determines how BK currents affect neuronal firing.J Comput Neurosci. 2011 Apr;30(2):211-23. doi: 10.1007/s10827-010-0246-3. Epub 2010 Jun 2. J Comput Neurosci. 2011. PMID: 20517708
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous