Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2014 Mar;20(3):300-5.
doi: 10.3171/2013.12.SPINE13674. Epub 2014 Jan 17.

Use of artificial neural networks to predict surgical satisfaction in patients with lumbar spinal canal stenosis: clinical article

Affiliations
Comparative Study

Use of artificial neural networks to predict surgical satisfaction in patients with lumbar spinal canal stenosis: clinical article

Parisa Azimi et al. J Neurosurg Spine. 2014 Mar.

Abstract

Object: The purpose of this study was to develop an artificial neural network (ANN) model for predicting 2-year surgical satisfaction, and to compare the new model with traditional predictive tools in patients with lumbar spinal canal stenosis.

Methods: The 2 prediction models included an ANN and a logistic regression (LR) model. The patient age, sex, duration of symptoms, walking distance, visual analog scale scores of leg pain or numbness, the Japanese Orthopaedic Association score, the Neurogenic Claudication Outcome Score, and the stenosis ratio values were determined as the input variables for the ANN and LR models that were developed. Patient surgical satisfaction was recorded using a standardized measure. The ANNs were fed patient data to predict 2-year surgical satisfaction based on several input variables. Sensitivity analysis was applied to the ANN model to identify the important variables. The receiver operating characteristic-area under curve (ROC-AUC), Hosmer-Lemeshow statistics, and accuracy rate were calculated for evaluating the 2 models.

Results: A total of 168 patients (59 male, 109 female; mean age 59.8 ± 11.6 years) were divided into training (n = 84), testing (n = 42), and validation (n = 42) data sets. Postsurgical satisfaction was 88.7% at 2-year follow-up. The stenosis ratio was the important variable selected by the ANN. The ANN model displayed a better accuracy rate in 96.9% of patients, a better Hosmer-Lemeshow statistic in 42.4% of patients, and a better ROC-AUC in 80% of patients, compared with the LR model.

Conclusions: The findings show that an ANN can predict 2-year surgical satisfaction for use in clinical application and is more accurate compared with an LR model.

PubMed Disclaimer

Comment in

Publication types