Target-controlled differentiation of axon terminals and synaptic organization
- PMID: 2443913
- PMCID: PMC299198
- DOI: 10.1073/pnas.84.19.6929
Target-controlled differentiation of axon terminals and synaptic organization
Abstract
These experiments investigate the processes regulating the morphological differentiation of synaptic connections. Electron microscopy showed that the terminal boutons and synaptic complexes of retinal afferent axons in the main thalamic visual nucleus, the dorsal lateral geniculate nucleus, differ in their morphology from those of ascending afferent axons in the main thalamic somatosensory (ventrobasal) nucleus. Developing retinal ganglion cell axons in hamsters were made to project permanently to the ventrobasal nucleus, rather than to the lateral geniculate nucleus. With respect to most of the ultrastructural features examined, the terminals and synaptic complexes of mature, anterogradely labeled retino-ventrobasal axons more closely resembled those of normal somatosensory afferents to the ventrobasal nucleus than they did those of normal retinofugal axons within the lateral geniculate nucleus. These results suggest that the ultrastructural differentiation of axon terminals and synaptic complexes is regulated largely by the target environment, although some features appear to be intrinsic to the afferent axons themselves.
Similar articles
-
Synaptic organization of anomalous retinal projections to the somatosensory and auditory thalamus: target-controlled morphogenesis of axon terminals and synaptic glomeruli.J Comp Neurol. 1988 Jun 15;272(3):383-408. doi: 10.1002/cne.902720308. J Comp Neurol. 1988. PMID: 2843579
-
Intrinsic determinants of retinal axon collateralization and arborization patterns.J Comp Neurol. 1999 Aug 16;411(1):119-29. J Comp Neurol. 1999. PMID: 10404111
-
Transient retinal axon collaterals to visual and somatosensory thalamus in neonatal hamsters.J Comp Neurol. 1991 Aug 8;310(2):200-14. doi: 10.1002/cne.903100206. J Comp Neurol. 1991. PMID: 1955582
-
Stages of growth of hamster retinofugal axons: implications for developing axonal pathways with multiple targets.J Neurosci. 1991 Feb;11(2):485-504. doi: 10.1523/JNEUROSCI.11-02-00485.1991. J Neurosci. 1991. PMID: 1992013 Free PMC article.
-
Development of anomalous retinal projections to nonvisual thalamic nuclei in Syrian hamsters: a quantitative study.J Comp Neurol. 1986 Oct 1;252(1):95-105. doi: 10.1002/cne.902520106. J Comp Neurol. 1986. PMID: 3793977
Cited by
-
Cortical GABAergic interneurons in cross-modal plasticity following early blindness.Neural Plast. 2012;2012:590725. doi: 10.1155/2012/590725. Epub 2012 Jun 7. Neural Plast. 2012. PMID: 22720175 Free PMC article. Review.
-
Nuclei-specific differences in nerve terminal distribution, morphology, and development in mouse visual thalamus.Neural Dev. 2014 Jul 10;9:16. doi: 10.1186/1749-8104-9-16. Neural Dev. 2014. PMID: 25011644 Free PMC article.
-
LRRTM1 underlies synaptic convergence in visual thalamus.Elife. 2018 Feb 9;7:e33498. doi: 10.7554/eLife.33498. Elife. 2018. PMID: 29424692 Free PMC article.
-
Target-specific factors regulate the formation of glutamatergic transmitter release sites in cultured neocortical neurons.J Neurosci. 1999 Nov 15;19(22):10004-13. doi: 10.1523/JNEUROSCI.19-22-10004.1999. J Neurosci. 1999. PMID: 10559408 Free PMC article.
-
CYP1A2 rs762551 polymorphism and risk for amyotrophic lateral sclerosis.Neurol Sci. 2021 Jan;42(1):175-182. doi: 10.1007/s10072-020-04535-x. Epub 2020 Jun 26. Neurol Sci. 2021. PMID: 32592103
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources