Visual space is represented by nonmatching topographies of distinct mouse retinal ganglion cell types
- PMID: 24440397
- PMCID: PMC3990865
- DOI: 10.1016/j.cub.2013.12.020
Visual space is represented by nonmatching topographies of distinct mouse retinal ganglion cell types
Abstract
The distributions of neurons in sensory circuits display ordered spatial patterns arranged to enhance or encode specific regions or features of the external environment. Indeed, visual space is not sampled uniformly across the vertebrate retina. Retinal ganglion cell (RGC) density increases and dendritic arbor size decreases toward retinal locations with higher sampling frequency, such as the fovea in primates and area centralis in carnivores [1]. In these locations, higher acuity at the level of individual cells is obtained because the receptive field center of a RGC corresponds approximately to the spatial extent of its dendritic arbor [2, 3]. For most species, structurally and functionally distinct RGC types appear to have similar topographies, collectively scaling their cell densities and arbor sizes toward the same retinal location [4]. Thus, visual space is represented across the retina in parallel by multiple distinct circuits [5]. In contrast, we find a population of mouse RGCs, known as alpha or alpha-like [6], that displays a nasal-to-temporal gradient in cell density, size, and receptive fields, which facilitates enhanced visual sampling in frontal visual fields. The distribution of alpha-like RGCs contrasts with other known mouse RGC types and suggests that, unlike most mammals, RGC topographies in mice are arranged to sample space differentially.
Copyright © 2014 Elsevier Ltd. All rights reserved.
Figures
Comment in
-
Visual circuits: mouse retina no longer a level playing field.Curr Biol. 2014 Feb 17;24(4):R155-6. doi: 10.1016/j.cub.2013.12.045. Curr Biol. 2014. PMID: 24556437 Free PMC article.
References
-
- Wässle H, Boycott BB. Functional architecture of the mammalian retina. Physiol Rev. 1991;71:447–480. - PubMed
-
- Collin SP. A web-based archive for topographic maps of retinal cell distribution in vertebrates. Clin Exp Optom. 2008;91:85–95. - PubMed
-
- Field GD, Chichilnisky EJ. Information processing in the primate retina: circuitry and coding. Annu Rev Neurosci. 2007;30:1–30. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
