Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2014 Jun 13:105:5-18.
doi: 10.1016/j.jprot.2014.01.007. Epub 2014 Jan 16.

Non-model organisms, a species endangered by proteogenomics

Affiliations
Review

Non-model organisms, a species endangered by proteogenomics

Jean Armengaud et al. J Proteomics. .

Abstract

Previously, large-scale proteomics was possible only for organisms whose genomes were sequenced, meaning the most common model organisms. The use of next-generation sequencers is now changing the deal. With "proteogenomics", the use of experimental proteomics data to refine genome annotations, a higher integration of omics data is gaining ground. By extension, combining genomic and proteomic data is becoming routine in many research projects. "Proteogenomic"-flavored approaches are currently expanding, enabling the molecular studies of non-model organisms at an unprecedented depth. Today draft genomes can be obtained using next-generation sequencers in a rather straightforward way and at a reasonable cost for any organism. Unfinished genome sequences can be used to interpret tandem mass spectrometry proteomics data without the need for time-consuming genome annotation, and the use of RNA-seq to establish nucleotide sequences that are directly translated into protein sequences appears promising. There are, however, certain drawbacks that deserve further attention for RNA-seq to become more efficient. Here, we discuss the opportunities of working with non-model organisms, the proteomic methods that have been used until now, and the dramatic improvements proffered by proteogenomics. These put the distinction between model and non-model organisms in great danger, at least in terms of proteomics!

Biological significance: Model organisms have been crucial for in-depth analysis of cellular and molecular processes of life. Focusing the efforts of thousands of researchers on the Escherichia coli bacterium, Saccharomyces cerevisiae yeast, Arabidopsis thaliana plant, Danio rerio fish and other models for which genetic manipulation was possible was certainly worthwhile in terms of fundamental and invaluable biological insights. Until recently, proteomics of non-model organisms was limited to tedious, homology-based techniques, but today draft genomes or RNA-seq data can be straightforwardly obtained using next-generation sequencers, allowing the establishment of a draft protein database for any organism. Thus, proteogenomics opens new perspectives for molecular studies of non-model organisms, although they are still difficult experimental organisms. This article is part of a Special Issue entitled: Proteomics of non-model organisms.

Keywords: Draft genome; High-throughput proteomics; Next-generation sequencing; Non-model organisms; Proteogenomics; RNA-seq.

PubMed Disclaimer

Publication types

LinkOut - more resources