Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Feb 12;136(6):2520-8.
doi: 10.1021/ja411202h. Epub 2014 Jan 30.

Air-stable gold nanoparticles ligated by secondary phosphine oxides for the chemoselective hydrogenation of aldehydes: crucial role of the ligand

Affiliations

Air-stable gold nanoparticles ligated by secondary phosphine oxides for the chemoselective hydrogenation of aldehydes: crucial role of the ligand

Israel Cano et al. J Am Chem Soc. .

Abstract

The synthesis of air-stable and homogeneous gold nanoparticles (AuNPs) employing tert-butyl(naphthalen-1-yl)phosphine oxide as supporting ligand is described via NaBH4 reduction of a Au(I) precursor, [(tert-butyl(naphthalen-1-yl)phosphine oxide)AuCl]2. This highly reproducible and simple procedure furnishes small (1.24 ± 0.16 nm), highly soluble nanoparticles that are found to be highly active catalysts for the hydrogenation of substituted aldehydes, giving high conversions and chemoselectivities for a wide variety of substrates. In addition to catalytic studies the role of the novel stabilizer in the remarkable activity and selectivity exhibited by this system was interrogated thoroughly using a wide range of techniques, including ATR FT-IR, HRMAS NMR, XPS, and EDX spectroscopy. In particular, isotopic labeling experiments enabled us to probe the coordination mode adopted by the SPO ligand bound to the nanoparticle surface by ATR FT-IR spectroscopy. In combination with a series of control experiments we speculate that the SPO ligand demonstrates ligand-metal cooperative effects and plays a seminal role in the heterolytic hydrogenation mechanism.

PubMed Disclaimer

LinkOut - more resources