Rapid learning for precision oncology
- PMID: 24445514
- DOI: 10.1038/nrclinonc.2013.244
Rapid learning for precision oncology
Abstract
The emerging paradigm of Precision Oncology 3.0 uses panomics and sophisticated methods of statistical reverse engineering to hypothesize the putative networks that drive a given patient's tumour, and to attack these drivers with combinations of targeted therapies. Here, we review a paradigm termed Rapid Learning Precision Oncology wherein every treatment event is considered as a probe that simultaneously treats the patient and provides an opportunity to validate and refine the models on which the treatment decisions are based. Implementation of Rapid Learning Precision Oncology requires overcoming a host of challenges that include developing analytical tools, capturing the information from each patient encounter and rapidly extrapolating it to other patients, coordinating many patient encounters to efficiently search for effective treatments, and overcoming economic, social and structural impediments, such as obtaining access to, and reimbursement for, investigational drugs.
Similar articles
-
Using biointelligence to search the cancer genome: an epistemological perspective on knowledge recovery strategies to enable precision medical genomics.Oncogene. 2008 Dec;27 Suppl 2:S58-66. doi: 10.1038/onc.2009.354. Oncogene. 2008. PMID: 19956181 Review.
-
Precision Medicine in Oncology Pharmacy Practice.Acta Med Acad. 2019 Apr;48(1):90-104. doi: 10.5644/ama2006-124.246. Acta Med Acad. 2019. PMID: 31264437 Review.
-
Computational oncology--mathematical modelling of drug regimens for precision medicine.Nat Rev Clin Oncol. 2016 Apr;13(4):242-54. doi: 10.1038/nrclinonc.2015.204. Epub 2015 Nov 24. Nat Rev Clin Oncol. 2016. PMID: 26598946 Review.
-
Pharmacogenetics in Oncology: A useful tool for individualizing drug therapy.Br J Clin Pharmacol. 2024 Oct;90(10):2483-2508. doi: 10.1111/bcp.16181. Epub 2024 Jul 30. Br J Clin Pharmacol. 2024. PMID: 39077855 Review.
-
A clinical pharmacy pilot within a Precision Medicine Program for cancer patients and review of related pharmacist clinical practice.J Oncol Pharm Pract. 2019 Jan;25(1):179-186. doi: 10.1177/1078155217738324. Epub 2017 Oct 27. J Oncol Pharm Pract. 2019. PMID: 29078708
Cited by
-
Effect of Public Deliberation on Patient Attitudes Regarding Consent and Data Use in a Learning Health Care System for Oncology.J Clin Oncol. 2019 Dec 1;37(34):3203-3211. doi: 10.1200/JCO.19.01693. Epub 2019 Oct 2. J Clin Oncol. 2019. PMID: 31577472 Free PMC article.
-
Network assessment of demethylation treatment in melanoma: Differential transcriptome-methylome and antigen profile signatures.PLoS One. 2018 Nov 28;13(11):e0206686. doi: 10.1371/journal.pone.0206686. eCollection 2018. PLoS One. 2018. PMID: 30485296 Free PMC article.
-
Jumonji domain-containing protein 1A promotes cell growth and progression via transactivation of c-Myc expression and predicts a poor prognosis in cervical cancer.Oncotarget. 2016 Dec 20;7(51):85151-85162. doi: 10.18632/oncotarget.13208. Oncotarget. 2016. PMID: 27835890 Free PMC article.
-
Tissue-Specific Signaling Networks Rewired by Major Somatic Mutations in Human Cancer Revealed by Proteome-Wide Discovery.Cancer Res. 2017 Jun 1;77(11):2810-2821. doi: 10.1158/0008-5472.CAN-16-2460. Epub 2017 Mar 31. Cancer Res. 2017. PMID: 28364002 Free PMC article.
-
Radiomics strategies for risk assessment of tumour failure in head-and-neck cancer.Sci Rep. 2017 Aug 31;7(1):10117. doi: 10.1038/s41598-017-10371-5. Sci Rep. 2017. PMID: 28860628 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources