Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2014 Jun;16(6):338-47.
doi: 10.1089/dia.2013.0327. Epub 2014 Jan 21.

The PILGRIM study: in silico modeling of a predictive low glucose management system and feasibility in youth with type 1 diabetes during exercise

Affiliations
Randomized Controlled Trial

The PILGRIM study: in silico modeling of a predictive low glucose management system and feasibility in youth with type 1 diabetes during exercise

Thomas Danne et al. Diabetes Technol Ther. 2014 Jun.

Abstract

Background: Predictive low glucose management (PLGM) may help prevent hypoglycemia by stopping insulin pump delivery based on predicted sensor glucose values.

Materials and methods: Hypoglycemic challenges were simulated using the Food and Drug Administration-accepted glucose simulator with 100 virtual patients. PLGM was then tested with a system composed of a Paradigm(®) insulin pump (Medtronic, Northridge, CA), an Enlite™ glucose sensor (Medtronic), and a BlackBerry(®) (Waterloo, ON, Canada)-based controller. Subjects (n=22) on continuous subcutaneous insulin infusion (five females, 17 males; median [range] age, 15 [range, 14-20] years; median [range] diabetes duration, 7 [2-14] years; median [range] glycated hemoglobin, 8.0% [6.7-10.4%]) exercised until the PLGM system suspended insulin delivery or until the reference blood glucose value (HemoCue(®); HemoCue GmbH, Großostheim, Germany) reached the predictive suspension threshold setting.

Results: PLGM reduced hypoglycemia (<70 mg/dL) in silico by 26.7% compared with no insulin suspension, as opposed to a 5.3% reduction in hypoglycemia with use of low glucose suspend (LGS). The median duration of hypoglycemia (time spent <70 mg/dL) with PLGM was significantly less than with LGS (58 min vs. 101 min, respectively; P<0.001). In the clinical trial the hypoglycemic threshold during exercise was reached in 73% of the patients, and hypoglycemia was prevented in 80% of the successful experiments. The mean (±SD) sensor glucose at predictive suspension was 92±7 mg/dL, resulting in a postsuspension nadir (by HemoCue) of 77±22 mg/dL. The suspension lasted for 90±35 (range, 30-120) min, resulting in a sensor glucose level at insulin resumption of 97±19 mg/dL.

Conclusions: In silico modeling and early feasibility data demonstrate that PLGM may further reduce the severity of hypoglycemia beyond that already established for algorithms that use a threshold-based suspension.

PubMed Disclaimer

Publication types

MeSH terms