Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987;98(2):125-33.
doi: 10.1007/BF01872125.

Single nonselective cation channels and Ca2+-activated K+ channels in aortic endothelial cells

Affiliations

Single nonselective cation channels and Ca2+-activated K+ channels in aortic endothelial cells

H Fichtner et al. J Membr Biol. 1987.

Abstract

In cultured bovine aortic endothelial cells, elementary K+ currents were studied in cell-attached and inside-out patches using the standard patch-clamp technique. Two different cationic channels were found, a large channel with a mean unitary conductance of 150 +/- 10 pS and a small channel with a mean unitary conductance of 12.5 +/- 1.1 pS. The 150-pS channel proved to be voltage- and Ca2+-activatable and seems to be a K+ channel. Its open probability increased on membrane depolarization and, at a given membrane potential, was greatly enhanced by elevating the Ca2+ concentration at the cytoplasmic side of the membrane from 10(-7) to 10(-4) M. 150-pS channels were not influenced by the patch configuration in that patch excision neither induced run-down nor evoked channel activity in silent cell-attached patches. However, they were only seen in two out of 55 patches. The 12-pS channel was predominant, a nonselective cationic channel with almost the same permeability for K+ and Na+ whose open probability was minimal near -60 mV but increased on membrane hyperpolarization. An increase in internal Ca2+ from 10(-7) to 10(-4) M left the open probability unchanged. Although the K+ selectivity of the 150-pS channels remains to be elucidated, it is concluded that they may be involved in controlling Ca2+-dependent cellular functions. Under physiological conditions, 12-pS nonselective channels may provide an inward cationic pathway for Na+.

PubMed Disclaimer

References

    1. Pflugers Arch. 1984 Jun;401(2):178-84 - PubMed
    1. Pflugers Arch. 1981 Aug;391(2):85-100 - PubMed
    1. Nature. 1981 Oct 8;293(5832):471-4 - PubMed
    1. Nature. 1981 Jun 11;291(5815):497-500 - PubMed
    1. J Cell Physiol. 1986 Mar;126(3):414-20 - PubMed

LinkOut - more resources