Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Mar 7;13(3):1527-36.
doi: 10.1021/pr401068k. Epub 2014 Jan 27.

Pregnancy-induced metabolic phenotype variations in maternal plasma

Affiliations

Pregnancy-induced metabolic phenotype variations in maternal plasma

Hemi Luan et al. J Proteome Res. .

Erratum in

Abstract

Metabolic variations occur during normal pregnancy to provide the growing fetus with a supply of nutrients required for its development and to ensure the health of the woman during gestation. Mass spectrometry-based metabolomics was employed to study the metabolic phenotype variations in the maternal plasma that are induced by pregnancy in each of its three trimesters. Nontargeted metabolomics analysis showed that pregnancy significantly altered the profile of metabolites in maternal plasma. The levels of six metabolites were found to change significantly throughout pregnancy, with related metabolic pathway variations observed in biopterin metabolism, phospholipid metabolism, amino acid derivatives, and fatty acid oxidation. In particular, there was a pronounced elevation of dihydrobiopterin (BH₂), a compound produced in the synthesis of dopa, dopamine, norepinephrine, and epinephrine, in the second trimester, whereas it was markedly decreased in the third trimester. The turnover of BH₂ and tryptophan catabolites indicated that the fluctuations of neurotransmitters throughout pregnancy might reveal the metabolic adaption in the maternal body for the growth of the fetus. Furthermore, 11 lipid classes and 41 carnitine species were also determined and this showed variations in the presence of long-chain acylcarnitines and lysophospholipids in later pregnancy, suggesting changes of acylcarnitines and lysophospholipids to meet the energy demands in pregnant women. To our knowledge, this work is the first report of dynamic metabolic signatures and proposed related metabolic pathways in the maternal plasma for normal pregnancies and provided the basis for time-dependent metabolic trajectory against which disease-related disorders may be contrasted.

PubMed Disclaimer

Publication types

LinkOut - more resources