Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Feb 4;1(1):5.
doi: 10.1186/2049-2618-1-5.

Estimation of viral richness from shotgun metagenomes using a frequency count approach

Affiliations

Estimation of viral richness from shotgun metagenomes using a frequency count approach

Heather K Allen et al. Microbiome. .

Abstract

Background: Viruses are important drivers of ecosystem functions, yet little is known about the vast majority of viruses. Viral shotgun metagenomics enables the investigation of broad ecological questions in phage communities. One ecological characteristic is species richness, which is the number of different species in a community. Viruses do not have a phylogenetic marker analogous to the bacterial 16S rRNA gene with which to estimate richness, and so contig spectra are employed to measure the number of virus taxa in a given community. A contig spectrum is generated from a viral shotgun metagenome by assembling the random sequence reads into groups of sequences that overlap (contigs) and counting the number of sequences that group within each contig. Current tools available to analyze contig spectra to estimate phage richness are limited by relying on rank-abundance data.

Results: We present statistical estimates of virus richness from contig spectra. The program CatchAll (http://www.northeastern.edu/catchall/) was used to analyze contig spectra in terms of frequency count data rather than rank-abundance, thus enabling formal statistical analyses. Also, the influence of potentially spurious low-frequency counts on richness estimates was minimized by two methods, empirical and statistical. The results show greater estimates of viral richness than previous calculations in nearly all environments analyzed, including swine feces and reclaimed fresh water.

Conclusions: CatchAll yielded consistent estimates of richness across viral metagenomes from the same or similar environments. Additionally, analysis of pooled viral metagenomes from different environments via mixed contig spectra resulted in greater richness estimates than those of the component metagenomes. Using CatchAll to analyze contig spectra will improve estimations of richness from viral shotgun metagenomes, particularly from large datasets, by providing statistical measures of richness.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Rank abundance versus frequency count data plots. The contig spectrum of a swine phage metagenome (RL1.NonmedDay0, [7]) was graphed by rank abundance (A) or frequency count (B) methods to illustrate the difference in representation of the same data.

References

    1. Angly F, Rodriguez-Brito B, Bangor D, McNairnie P, Breitbart M, Salamon P, Felts B, Nulton J, Mahaffy J, Rohwer F. PHACCS, an online tool for estimating the structure and diversity of uncultured viral communities using metagenomic information. BMC Bioinformatics. 2005;6:41. doi: 10.1186/1471-2105-6-41. - DOI - PMC - PubMed
    1. Nelson EJ, Harris JB, Morris JG Jr, Calderwood SB, Camilli A. Cholera transmission: the host, pathogen and bacteriophage dynamic. Nat Rev Microbiol. 2009;7:693–702. doi: 10.1038/nrmicro2204. - DOI - PMC - PubMed
    1. Jensen MA, Faruque SM, Mekalanos JJ, Levin BR. Modeling the role of bacteriophage in the control of cholera outbreaks. Proc Natl Acad Sci U S A. 2006;103:4652–4657. doi: 10.1073/pnas.0600166103. - DOI - PMC - PubMed
    1. Wommack KE, Colwell RR. Virioplankton: viruses in aquatic ecosystems. Microbiol Mol Biol Rev. 2000;64:69–114. doi: 10.1128/MMBR.64.1.69-114.2000. - DOI - PMC - PubMed
    1. Breitbart M, Salamon P, Andresen B, Mahaffy JM, Segall AM, Mead D, Azam F, Rohwer F. Genomic analysis of uncultured marine viral communities. Proc Natl Acad Sci U S A. 2002;99:14250–14255. doi: 10.1073/pnas.202488399. - DOI - PMC - PubMed

LinkOut - more resources