Finding the rules for successful drug optimisation
- PMID: 24451293
- DOI: 10.1016/j.drudis.2014.01.005
Finding the rules for successful drug optimisation
Abstract
Drug discovery is a process of multiparameter optimisation, with the objective of finding compounds that achieve multiple, project-specific property criteria. These criteria are often based on the subjective opinion of the project team, but analysis of historical data can help to find the most appropriate profile. Computational 'rule induction' approaches enable an objective analysis of complex data to identify interpretable, multiparameter rules that distinguish compounds with the greatest likelihood of success for a project. Each property criterion highlights the most critical data that enable effective compound prioritisation decisions. We illustrate this with two applications: determining rules for simple, drug-like properties; and exploring experimental target inhibition data to find rules to reduce the risk of toxicity.
Copyright © 2014 Elsevier Ltd. All rights reserved.
Similar articles
-
Addressing toxicity risk when designing and selecting compounds in early drug discovery.Drug Discov Today. 2014 May;19(5):688-93. doi: 10.1016/j.drudis.2014.01.006. Epub 2014 Jan 19. Drug Discov Today. 2014. PMID: 24451294 Review.
-
Considering the impact drug-like properties have on the chance of success.Drug Discov Today. 2013 Jul;18(13-14):659-66. doi: 10.1016/j.drudis.2013.02.008. Epub 2013 Feb 28. Drug Discov Today. 2013. PMID: 23458995 Review.
-
The challenges of making decisions using uncertain data.J Comput Aided Mol Des. 2015 Sep;29(9):809-16. doi: 10.1007/s10822-015-9855-2. Epub 2015 Jul 1. J Comput Aided Mol Des. 2015. PMID: 26126976
-
Multi-parameter optimization: identifying high quality compounds with a balance of properties.Curr Pharm Des. 2012;18(9):1292-310. doi: 10.2174/138161212799436430. Curr Pharm Des. 2012. PMID: 22316157 Review.
-
Hit finding: towards 'smarter' approaches.Curr Opin Pharmacol. 2009 Oct;9(5):589-93. doi: 10.1016/j.coph.2009.06.001. Epub 2009 Jul 1. Curr Opin Pharmacol. 2009. PMID: 19576852 Review.
Cited by
-
Identification and ranking of important bio-elements in drug-drug interaction by Market Basket Analysis.Bioimpacts. 2020;10(2):97-104. doi: 10.34172/bi.2020.12. Epub 2019 Nov 2. Bioimpacts. 2020. PMID: 32363153 Free PMC article.
-
In vitro tools for orally inhaled drug products-state of the art for their application in pharmaceutical research and industry and regulatory challenges.In Vitro Model. 2022;1(1):29-40. doi: 10.1007/s44164-021-00003-8. Epub 2021 Dec 21. In Vitro Model. 2022. PMID: 38624975 Free PMC article. Review.
-
ABDpred: Prediction of active antimicrobial compounds using supervised machine learning techniques.Indian J Med Res. 2024 Jan 1;159(1):78-90. doi: 10.4103/ijmr.ijmr_1832_22. Epub 2024 Mar 4. Indian J Med Res. 2024. PMID: 38345040 Free PMC article.
-
Machine learning guided association of adverse drug reactions with in vitro target-based pharmacology.EBioMedicine. 2020 Jul;57:102837. doi: 10.1016/j.ebiom.2020.102837. Epub 2020 Jun 18. EBioMedicine. 2020. PMID: 32565027 Free PMC article.
-
Pathophysiological Role and Medicinal Chemistry of A2A Adenosine Receptor Antagonists in Alzheimer's Disease.Molecules. 2022 Apr 21;27(9):2680. doi: 10.3390/molecules27092680. Molecules. 2022. PMID: 35566035 Free PMC article. Review.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources