25th anniversary article: label-free electrical biodetection using carbon nanostructures
- PMID: 24452968
- DOI: 10.1002/adma.201304912
25th anniversary article: label-free electrical biodetection using carbon nanostructures
Abstract
Nanostructures are promising candidates for use as active materials for the detection of chemical and biological species, mainly due to the high surface-to-volume ratio and the unique physical properties arising at the nanoscale. Among the various nanostructures, materials comprised of sp(2) -carbon enjoy a unique position due to the possibility to readily prepare them in various dimensions ranging from 0D, through 1D to 2D. This review focuses on the use of 1D (carbon nanotubes) and 2D (graphene) carbon nanostructures for the detection of biologically relevant molecules. A key advantage is the possibility to perform the sensing operation without the use of any labels or complex reaction schemes. Along this spirit, various strategies reported for the label-free electrical detection of biomolecules using carbon nanostructures are discussed. With their promise for ultimate sensitivity and the capability to attain high selectivity through controlled chemical functionalization, carbon-based nanobiosensors are expected to open avenues to novel diagnostic tools as well as to obtain new fundamental insight into biomolecular interactions down to the single molecule level.
Keywords: DNA; carbon nanotubes; graphene; nanobiosensors; proteins.
© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Similar articles
-
Nanoelectronic Heterodyne Sensor: A New Electronic Sensing Paradigm.Acc Chem Res. 2016 Nov 15;49(11):2578-2586. doi: 10.1021/acs.accounts.6b00329. Epub 2016 Sep 26. Acc Chem Res. 2016. PMID: 27668314
-
Recent advances in bioactive 1D and 2D carbon nanomaterials for biomedical applications.Nanomedicine. 2018 Oct;14(7):2433-2454. doi: 10.1016/j.nano.2017.03.021. Epub 2017 May 26. Nanomedicine. 2018. PMID: 28552644 Review.
-
Recent progress in nanosensors for sensitive detection of biomolecules.Nanoscale. 2013 May 7;5(9):3589-600. doi: 10.1039/c3nr00084b. Epub 2013 Mar 26. Nanoscale. 2013. PMID: 23529571 Review.
-
Nanocarbons for Biology and Medicine: Sensing, Imaging, and Drug Delivery.Chem Rev. 2019 Aug 28;119(16):9559-9656. doi: 10.1021/acs.chemrev.9b00099. Epub 2019 Jul 9. Chem Rev. 2019. PMID: 31287663 Review.
-
Electrical contacts to one- and two-dimensional nanomaterials.Nat Nanotechnol. 2011 Nov 27;6(12):773-83. doi: 10.1038/nnano.2011.196. Nat Nanotechnol. 2011. PMID: 22120529 Review.
Cited by
-
On the Use of Scalable NanoISFET Arrays of Silicon with Highly Reproducible Sensor Performance for Biosensor Applications.ACS Omega. 2016 Jul 31;1(1):84-92. doi: 10.1021/acsomega.6b00014. Epub 2016 Jul 12. ACS Omega. 2016. PMID: 30023473 Free PMC article.
-
Specific detection of biomolecules in physiological solutions using graphene transistor biosensors.Proc Natl Acad Sci U S A. 2016 Dec 20;113(51):14633-14638. doi: 10.1073/pnas.1625010114. Epub 2016 Dec 5. Proc Natl Acad Sci U S A. 2016. PMID: 27930344 Free PMC article.
-
General strategy for biodetection in high ionic strength solutions using transistor-based nanoelectronic sensors.Nano Lett. 2015 Mar 11;15(3):2143-8. doi: 10.1021/acs.nanolett.5b00133. Epub 2015 Feb 16. Nano Lett. 2015. PMID: 25664395 Free PMC article.
-
Electrical Characteristics and pH Response of a Parylene-H Sensing Membrane in a Si-Nanonet Ion-Sensitive Field-Effect Transistor.Sensors (Basel). 2018 Nov 12;18(11):3892. doi: 10.3390/s18113892. Sensors (Basel). 2018. PMID: 30424510 Free PMC article.
-
A label-free biosensor based on graphene and reduced graphene oxide dual-layer for electrochemical determination of beta-amyloid biomarkers.Mikrochim Acta. 2020 Apr 25;187(5):288. doi: 10.1007/s00604-020-04267-x. Mikrochim Acta. 2020. PMID: 32333119 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources