Regulation of AQP2 in Collecting Duct : An emphasis on the Effects of Angiotensin II or Aldosterone
- PMID: 24459495
- PMCID: PMC3894501
- DOI: 10.5049/EBP.2007.5.1.15
Regulation of AQP2 in Collecting Duct : An emphasis on the Effects of Angiotensin II or Aldosterone
Abstract
Vasopressin, angiotensin II (AngII), and aldosterone are essential hormones in the regulation of body fluid homeostatsis. We examined the effects of AngII or aldosterone on the regulation of body water balance. We demonstrated that 1) short-term treatment with AngII in the primary cultured inner medullary collecting duct cells played a role in the regulation of AQP2 targeting to the plasma membrane through AT1 receptor activation. This potentiated the effects of dDAVP on cAMP accumulation, AQP2 phosphorylation, and AQP2 plasma membrane targeting; 2) pharmacological blockade of the AngII AT1 receptor in rats co-treated with dDAVP and dietary NaCl-restriction (to induce high plasma endogenous AngII) resulted in an increase in urine production, a decrease in urine osmolality, and blunted the dDAVP-induced upregulation of AQP2; 3) long-term aldosterone infusion in normal rats or in rats with diabetes insipidus was associated with polyuria and decreased urine concentration, accompanied by decreased apical but increased basolateral AQP2 labeling intensity in the connecting tubule and cortical collecting duct; and 4) in contrast to the effects of dDAVP and AngII, short-term aldosterone treatment does not alter the intracellular distribution of AQP2. In conclusion, angiotensin II, and aldosterone could play a role in the regulation of renal water reabsorption by changing intracellular AQP2 targeting and/or AQP2 abundance, in addition to the vasopressin.
Keywords: Aldosterone; Angiotensin II; Aquaporin 2; Collecting kidney tubules; Urine concentration.
Figures




Similar articles
-
Long-term aldosterone treatment induces decreased apical but increased basolateral expression of AQP2 in CCD of rat kidney.Am J Physiol Renal Physiol. 2007 Jul;293(1):F87-99. doi: 10.1152/ajprenal.00431.2006. Epub 2007 Mar 20. Am J Physiol Renal Physiol. 2007. PMID: 17376764
-
Increased AQP2 targeting in primary cultured IMCD cells in response to angiotensin II through AT1 receptor.Am J Physiol Renal Physiol. 2007 Jan;292(1):F340-50. doi: 10.1152/ajprenal.00090.2006. Epub 2006 Aug 8. Am J Physiol Renal Physiol. 2007. PMID: 16896188
-
Interaction between vasopressin and angiotensin II in vivo and in vitro: effect on aquaporins and urine concentration.Am J Physiol Renal Physiol. 2010 Sep;299(3):F577-84. doi: 10.1152/ajprenal.00168.2010. Epub 2010 Jun 24. Am J Physiol Renal Physiol. 2010. PMID: 20576679 Free PMC article.
-
Aquaporins in the kidney: from molecules to medicine.Physiol Rev. 2002 Jan;82(1):205-44. doi: 10.1152/physrev.00024.2001. Physiol Rev. 2002. PMID: 11773613 Review.
-
Physiology and pathophysiology of renal aquaporins.Semin Nephrol. 2001 May;21(3):231-8. doi: 10.1053/snep.2001.21647. Semin Nephrol. 2001. PMID: 11320486 Review.
Cited by
-
Effects of gonadectomy and testosterone treatment on aquaporin expression in the kidney of normotensive and hypertensive rats.Exp Biol Med (Maywood). 2017 Jul;242(13):1376-1386. doi: 10.1177/1535370217703360. Epub 2017 Apr 11. Exp Biol Med (Maywood). 2017. PMID: 28399644 Free PMC article.
-
Heterotrimeric G protein signaling in polycystic kidney disease.Physiol Genomics. 2016 Jul 1;48(7):429-45. doi: 10.1152/physiolgenomics.00027.2016. Epub 2016 May 13. Physiol Genomics. 2016. PMID: 27199453 Free PMC article. Review.
-
Aldosterone Contributes to Vasopressin Escape through Changes in Water and Urea Transport.Biomedicines. 2023 Jun 27;11(7):1844. doi: 10.3390/biomedicines11071844. Biomedicines. 2023. PMID: 37509484 Free PMC article.
-
Association of Proteinuria with Urinary Concentration Defect in Puromycin Aminonucleoside Nephrosis.Electrolyte Blood Press. 2020 Dec;18(2):31-39. doi: 10.5049/EBP.2020.18.2.31. Epub 2020 Dec 28. Electrolyte Blood Press. 2020. PMID: 33408745 Free PMC article.
-
Targeting the Trafficking of Kidney Water Channels for Therapeutic Benefit.Annu Rev Pharmacol Toxicol. 2020 Jan 6;60:175-194. doi: 10.1146/annurev-pharmtox-010919-023654. Epub 2019 Sep 27. Annu Rev Pharmacol Toxicol. 2020. PMID: 31561739 Free PMC article. Review.
References
-
- Knepper MA, Kim GH, Fernandez-Llama P, Ecelbarger CA. Regulation of thick ascending limb transport by vasopressin. J Am Soc Nephrol. 1999;10:628–634. - PubMed
-
- Knepper MA, Nielsen S, Chou CL, DiGiovanni SR. Mechanism of vasopressin action in the renal collecting duct. Semin Nephrol. 1994;14:302–321. - PubMed
-
- Nielsen S, Frokiaer J, Marples D, Kwon TH, Agre P, Knepper MA. Aquaporins in the kidney : from molecules to medicine. Physiol Rev. 2002;82:205–244. - PubMed
-
- Kwon TH, Hager H, Nejsum LN, Andersen ML, Frokiaer J, Nielsen S. Physiology and pathophysiology of renal aquaporins. Semin Nephrol. 2001;21:231–238. - PubMed
Publication types
LinkOut - more resources
Full Text Sources
Research Materials