Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Meta-Analysis
. 2014 Jan 24:12:12.
doi: 10.1186/1741-7015-12-12.

Spousal diabetes as a diabetes risk factor: a systematic review and meta-analysis

Affiliations
Meta-Analysis

Spousal diabetes as a diabetes risk factor: a systematic review and meta-analysis

Aaron Leong et al. BMC Med. .

Abstract

Background: Diabetes history in biologically-related individuals increases diabetes risk. We assessed diabetes concordance in spouses (that is, biologically unrelated family members) to gauge the importance of socioenvironmental factors.

Methods: We selected cross-sectional, case-control and cohort studies examining spousal association for diabetes and/or prediabetes (impaired fasting glucose or impaired glucose tolerance), indexed in Medline, Embase or Scopus (1 January 1997 to 28 February 2013). Effect estimates (that is, odds ratios, incidence rate ratios, and so on) with body mass index (BMI) adjustment were pooled separately from those without BMI adjustment (random effects models) to distinguish BMI-dependent and independent concordance.

Results: Searches yielded 2,705 articles; six were retained (n = 75,498 couples) for systematic review and five for meta-analysis. Concordance was lowest in a study that relied on women's reports of diabetes in themselves and their spouses (effect estimate 1.1, 95% CI 1.0 to 1.30) and highest in a study with systematic assessment of glucose tolerance (2.11, 95% CI 1.74 to 5.10). The random-effects pooled estimate adjusted for age and other covariates but not BMI was 1.26 (95% CI 1.08 to 1.45). The estimate with BMI adjustment was lower (1.18, 95% CI 0.97 to 1.40). Two studies assessing between-spouse associations of diabetes/prediabetes determined by glucose testing reported high concordance (OR 1.92, 95% CI 1.55 to 2.37 without BMI adjustment; 2.32, 95% CI 1.87 to 3.98 with BMI adjustment). Two studies did not distinguish type 1 and type 2 diabetes. However given that around 95% of adults is type 2, this is unlikely to have influenced the results.

Conclusions: Our pooled estimate suggests that a spousal history of diabetes is associated with a 26% diabetes risk increase. Recognizing shared risk between spouses may improve diabetes detection and motivate couples to increase collaborative efforts to optimize eating and physical activity habits.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Selection strategy.
Figure 2
Figure 2
Spousal association for diabetes not adjusted for BMI. ES: effect size; CI: confidence interval; Hippisley-Cox (UK) reported ORs for diabetes adjusted for age; Jurj (China) adjusted for women’s age, education, occupation and family income; Stimpson (US) adjusted for age, education and nativity of husband; Hemminki (Sweden) reported rate ratios standardized to expected number of cases for age, sex, period, region and socioeconomic status; Khan (UK) reported BMI-adjusted estimates only and was therefore not pooled in this analysis. When the sexes were analyzed separately, we arbitrarily chose to display the effect estimates with diabetes in the husband as the exposure and diabetes in the wife as the outcome. In general, the effect sizes were similar whether women or men were the exposure. BMI, body mass index; OR, odds ratio.
Figure 3
Figure 3
Spousal association for diabetes adjusted for BMI. ES, effect size; CI, confidence interval; In addition to adjusting for BMI, Hippisley-Cox (UK) reported odds ratios for diabetes adjusted for women and men’s age, smoking status, general practice clustering; Jurj (China) adjusted for women’s age, education, occupation and family income; Khan (UK) adjusted for age; Stimpson (US) adjusted for age, education, nativity, blood pressure, smoking status and alcohol intake of the husband. Hemminki (Sweden) did not report BMI-adjusted effect estimates and was, therefore, not pooled in this analysis. When the sexes were analyzed separately, we arbitrarily chose to display the effect measures with diabetes in the husband as the exposure and diabetes in the wife as the outcome. In general, the effect sizes were similar whether women or men were the exposure (Table 1). BMI, body mass index.

Comment in

Similar articles

Cited by

References

    1. Narayan KM, Boyle JP, Geiss LS, Saaddine JB, Thompson TJ. Impact of recent increase in incidence on future diabetes burden: U.S., 2005–2050. Diabetes Care. 2006;29:2114–2116. doi: 10.2337/dc06-1136. - DOI - PubMed
    1. Stamler J, Vaccaro O, Neaton JD, Wentworth D. Diabetes, other risk factors, and 12-yr cardiovascular mortality for men screened in the Multiple Risk Factor Intervention Trial. Diabetes Care. 1993;16:434–444. doi: 10.2337/diacare.16.2.434. - DOI - PubMed
    1. Cowie CC, Rust KF, Byrd-Holt DD, Gregg EW, Ford ES, Geiss LS, Bainbridge KE, Fradkin JE. Prevalence of diabetes and high risk for diabetes using A1C criteria in the U.S. population in 1988–2006. Diabetes Care. 2010;33:562–568. doi: 10.2337/dc09-1524. - DOI - PMC - PubMed
    1. Leong A, Dasgupta K, Chiasson JL, Rahme E. Estimating the population prevalence of diagnosed and undiagnosed diabetes. Diabetes Care. 2013;36:3002–3008. doi: 10.2337/dc12-2543. - DOI - PMC - PubMed
    1. Young TK, Mustard CA. Undiagnosed diabetes: does it matter? CMAJ. 2001;164:24–28. - PMC - PubMed

Publication types