Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2014 Apr 10:179:11-7.
doi: 10.1016/j.jconrel.2014.01.016. Epub 2014 Jan 23.

Polyplex-releasing microneedles for enhanced cutaneous delivery of DNA vaccine

Affiliations
Comparative Study

Polyplex-releasing microneedles for enhanced cutaneous delivery of DNA vaccine

Nak Won Kim et al. J Control Release. .

Abstract

Microneedle (MN)-based DNA vaccines have many advantages over conventional vaccines administered by hypodermic needles. However, an efficient strategy for delivering DNA vaccines to intradermal cells has not yet been established. Here, we report a new approach for delivering polyplex-based DNA vaccines using MN arrays coated with a pH-responsive polyelectrolyte multilayer assembly (PMA). This approach enabled rapid release of polyplex upon application to the skin. In addition to the polyplex-releasing MNs, we attempted to further maximize the vaccination by developing a polymeric carrier that targeted resident antigen presenting cells (APCs) rich in the intradermal area, as well as a DNA vaccine encoding a secretable fusion protein containing amyloid beta monomer (Aβ1-42), an antigenic determinant. The resulting vaccination system was able to successfully induce a robust humoral immune response compared to conventional subcutaneous injection with hypodermal needles. In addition, antigen challenge after immunization elicited an immediate and strong recall immune response due to immunogenic memory. These results suggest the potential utility of MN-based polyplex delivery systems for enhanced DNA vaccination.

Keywords: DNA vaccine; Gene delivery; Layer-by-layer assembly; Microneedle array; pH-responsive materials.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources