The role of D2-autoreceptors in regulating dopamine neuron activity and transmission
- PMID: 24463000
- PMCID: PMC4108583
- DOI: 10.1016/j.neuroscience.2014.01.025
The role of D2-autoreceptors in regulating dopamine neuron activity and transmission
Abstract
Dopamine D2-autoreceptors play a key role in regulating the activity of dopamine neurons and control the synthesis, release and uptake of dopamine. These Gi/o-coupled inhibitory receptors play a major part in shaping dopamine transmission. Found at both somatodendritic and axonal sites, autoreceptors regulate the firing patterns of dopamine neurons and control the timing and amount of dopamine released from their terminals in target regions. Alterations in the expression and activity of autoreceptors are thought to contribute to Parkinson's disease as well as schizophrenia, drug addiction and attention-deficit hyperactivity disorder (ADHD), which emphasizes the importance of D2-autoreceptors in regulating the dopamine system. This review will summarize the cellular actions of dopamine autoreceptors and discuss recent advances that have furthered our understanding of the mechanisms by which D2-receptors control dopamine transmission.
Keywords: GPCR; VTA; cocaine; psychostimulants; substantia nigra.
Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Figures
References
-
- Adell A, Artigas F. The somatodendritic release of dopamine in the ventral tegmental area and its regulation by afferent transmitter systems. Neurosci Biobehav Rev. 2004;28:415–431. - PubMed
-
- Aghajanian GK, Bunney BS. Dopamine “autoreceptors”: pharmacological characterization by microiontophoretic single cell recording studies. Naunyn Schmiedebergs Arch Pharmacol. 1977;297:1–7. - PubMed
-
- Anzalone A, Lizardi-Ortiz JE, Ramos M, De Mei C, Hopf FW, Iaccarino C, Halbout B, Jacobsen J, Kinoshita C, Welter M, Caron MG, Bonci A, Sulzer D, Borrelli E. Dual control of dopamine synthesis and release by presynaptic and postsynaptic dopamine D2 receptors. J Neurosci. 2012;32:9023–9034. - PMC - PubMed
-
- Baik JH, Picetti R, Saiardi A, Thiriet G, Dierich A, Depaulis A, Le Meur M, Borrelli E. Parkinsonian-like locomotor impairment in mice lacking dopamine D2 receptors. Nature. 1995;377:424–428. - PubMed
-
- Beaulieu JM, Gainetdinov RR. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev. 2011;63:182–217. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
