Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Mar;20(3):159-64.
doi: 10.1002/psc.2588. Epub 2014 Jan 27.

Isolation and characterization of SsmTx-I, a Specific Kv2.1 blocker from the venom of the centipede Scolopendra Subspinipes Mutilans L. Koch

Affiliations

Isolation and characterization of SsmTx-I, a Specific Kv2.1 blocker from the venom of the centipede Scolopendra Subspinipes Mutilans L. Koch

Minzhi Chen et al. J Pept Sci. 2014 Mar.

Abstract

Scolopendra subspinipes mutilans, also known as Chinese red-headed centipede, is a venomous centipede from East Asia and Australasia. Venom from this animal has not been researched as thoroughly as venom from snakes, snails, scorpions, and spiders. In this study, we isolated and characterized SsmTx-I, a novel neurotoxin from the venom of S. subspinipes mutilans. SsmTx-I contains 36 residues with four cysteines forming two disulfide bonds. It had low sequence similarity (<10%) with other identified peptide toxins. By whole-cell recording, SsmTx-I significantly blocked voltage-gated K⁺ channels in dorsal root ganglion neurons with an IC₅₀ value of 200 nM, but it had no effect on voltage-gated Na⁺ channels. Among the nine K⁺ channel subtypes expressed in human embryonic kidney 293 cells, SsmTx-I selectively blocked the Kv2.1 current with an IC₅₀ value of 41.7 nM, but it had little effect on currents mediated by other K⁺ channel subtypes. Blockage of Kv2.1 by SsmTx-I was not associated with significant alteration of steady-state activation, suggesting that SsmTx-I might act as a simple inhibitor or channel blocker rather than a gating modifier. Our study reported a specific Kv2.1-blocker from centipede venom and provided a basis for future investigations of SsmTx-I, for example on structure-function relationships, mechanism of action, and pharmacological potential.

Keywords: Kv2.1; SsmTx-I; centipede venom; voltage-gated K+ channel.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources